
HAL Id: hal-04465922
https://u-picardie.hal.science/hal-04465922

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Effect of the local branching strategy on the descent
method: The case of the generalized multiple knapsack

with setup
Samah Boukhari, Isma Dahmani, Mhand Hifi

To cite this version:
Samah Boukhari, Isma Dahmani, Mhand Hifi. Effect of the local branching strategy on the descent
method: The case of the generalized multiple knapsack with setup. Computers & Industrial Engi-
neering, 2022, 165, pp.107934. �10.1016/j.cie.2022.107934�. �hal-04465922�

https://u-picardie.hal.science/hal-04465922
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Effect of the Local branching Strategy on the Descent Method: The Case

of the Generalized Multiple Knapsack with Setup

Samah Boukhari†, Isma Dahmani† and Mhand Hifi‡,?

All authors are listed in alphabetical order of their last name, following the

standard order used by the Operational Research community in France.

†Samah Boukhari

LaROMaD, USTHB BP 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria

E-mail: boukhari.samah.ro@gmail.com

†Isma Dahmani

LaROMaD, USTHB BP 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria

E-mail: dahmani.isma@gmail.com

‡Mhand Hifi

?Corresponding author.

EPROAD EA 4669, UPJV, 7 rue du Moulin Neuf, 80000 Amiens, France

E-mail: hifi@u-picardie.fr

Declarations of interest.

The authors do not have any possible conflicts of interest.

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0360835222000043
Manuscript_c030183d1366d7458b0f9ef7d991635d

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0360835222000043
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0360835222000043


Abstract

In this paper, we investigate the use of the local branching strategy into an iterative descent

method for tackling the generalized multiple knapsack problem with setup. An instance of

the problem is composed of a set of classes containing items, and a set of available knap-

sacks. Its objective consists in selecting the subsets of items belonging to the classes with

a maximum objective value: each item is characterized with its profit and weight while a

class is characterized with its cost such that a given item may be selected whenever its cor-

responding class is activated, and an item can be configured (setup) for a single knapsack.

The proposed iterative method starts by solving a series of reduced subproblems built by

adding a series of cardinality constraints. Next, the local branching strategy is iteratively

employed for highlighting the efficiency of the method. Finally, the behavior of the method

is evaluated on a set of instances extracted from the literature, where its achieved bounds

are compared to those reached by the best methods available in the literature. A statistical

analysis is also provided showing the high performance of the method. New bounds are

discovered.

Keywords: Branching; Integer Programming; Knapsack; Learning; Setups.

1. Introduction

The knapsack problem occurs in several real-world situations, like cutting and packing

(Chen et al., 2019; Liu et al., 2021), cryptography (Merkle & Hellman, 1978), logistics

(Perboli et al., 2014), and others (Plata-González et al., 2019). Such a problem plays, on

the one hand, a central role in modeling more higher NP-hard combinatorial optimization5

problems, where the designed models may be used as a guiding strategy for designing pow-

erful exact and approximate methods. On the other hand, tackling large-scale instances

is often important, especially when considering real-world application for which both run-

time and quality of reached solutions are crucial. In recent years, simple deterministic and

Preprint submitted to Journal of LATEX Templates December 11, 2021



stochastic heuristics were also used for solving several knapsack problems while it has been10

observed that the hybridization of solution procedures may be considered as a very promis-

ing research issue. Nevertheless, the difficulty which may be encountered when applying

such methods may be related to the runtime consumed.

In this paper, we focus on solving the Generalized Multiple Knapsack Problem with

Setup (GMKPS), which belongs to the NP-hard knapsack family. On the one hand,15

GMKPS is a generalization of multiple knapsack problem (MKP), where items belong

to disjoint classes and can be processed in multiple knapsacks. The activation of a class

induces setup costs and resource consumptions (setup time), which has a negative impact

on both the capacity constraint and the objective function. On the other hand, it can be

viewed as an extended version of the single Knapsack Problem with Setup (KPS) such that20

multiple knapsacks with setups are considered.

An instance of GMKPS is characterized by a set of T knapsacks (such that t ∈

{1, . . . , T}) and a set of N disjoint classes (families) of items. A class i ∈ {1, . . . , N}

is characterized by ni items and a knapsack-dependent integer setup cost fit, and an in-

teger si denoting its capacity consumption. Each item j, j ∈ {1, . . . , ni}, of a family i25

is associated with a knapsack-dependent profit pijt and a capacity consumption wij . Fur-

ther, an item can be selected only if its corresponding class is activated, and a n item

can only be setup into one knapsack. In this problem the activation of a class incurs a

knapsack-dependent setup cost, which should be considered in both the objective function

and constraints. The objective of the problem consists in selecting appropriate items, from30

different disjoint classes, to belong to the knapsack with a maximum objective value, and

without violating the capacity constraints.

Let xijt equal to 1 if item j of family(class) i is placed in period t, 0 otherwise. Setup

binary variables yit equal to 1 if family i of knapsack t is activated, 0 otherwise. Thus, the

formal description of GMKPS (noted PGMKPS) follows:35

PGMKPS : max

T∑
t=1

N∑
i=1

ni∑
j=1

pijtxijt +

T∑
t=1

N∑
i=1

fityit (1)

s.t.
N∑
i=1

( ni∑
j=1

wijxijt + siyit

)
≤ Rt, ∀t ∈ T (2)

xijt ≤ yit, ∀i ∈ N , ∀j ∈ {1, ..., ni}, ∀t ∈ T (3)
T∑
t=1

xijt ≤ 1, ∀i ∈ N , ∀j ∈ {1, ...ni} (4)

xijt ∈ {0, 1}, yit ∈ {0, 1}, ∀i ∈ N , ∀j ∈ {1, ..., ni}, ∀t ∈ T . (5)

2



The objective function (Equation 1) maximizes the profit of selected items excluding the

fixed setup costs of selected families (classes). Constraints ((2)) guarantee that the weight

of selected items in each knapsack, augmented with their setup capacity consumption, does

not exceed the knapsack capacity Rt. Constraints (3) ensure that an item j is selected in

the knapsack only if its family i of period t is activated. Constraints (4) indicates that any40

item j of a class i is setup at most in one knapsack. Finally, constraints (5) represent the

integrality of the decision variables.

The remainder of the paper is organized as follows. The background is described in Sec-

tion 2. The designed approach which combines both descent method and local branching

is presented in Section 3. Section 3.1 discusses the variable neighborhood descent method.45

A restricted linear relaxation of the original problem is discussed in Section 3.2, where a

starting solution is provided by applying a tailored procedure. Section 3.3 summarizes the

principle of the basic local branching. Section 3.4 exposes a new process that is introduced

for reaching a series of feasible solutions; that is based upon a series of constraints used

as local branches into an iterative descent method, like variable neighborhood descent..50

Finally, Section 4 exposes the experimentations conducted on three sets of benchmark in-

stances taken from the literature. Its behavior is also analyzed in the same section, where

its provided results are compared to those achieved by the best methods available in the

literature and the state-of-the-art Cplex solver.

A new hybrid method is designed for approximately solving GMKPS. The main prin-55

ciple of the method is based upon injecting a series of local branching into an iterative

descent method, where a reference solution is built throughout a special mixed integer

programming. The proposed method employs the following features:

1. To build a reference solution used as a starting solution for the designed method.

This solution is obtained by solving a starting mixed integer programming which is60

combined with a collecting procedure.

2. Then, the following two stages are used:

(a) To build a relaxed problem and to solve it by using a local branching-based

algorithm and,

(b) To solve a new reduced problem by injecting information collected from the65

resolution of the mixed integer model solved at Step 2a.

3. Steps 2a and 2b are iterated till matching the final stopping condition.

3



2. Related work

GMKPS belongs to the knapsack problem family, which is one of the old problems

belonging to the combinatorial optimization problems. Such a problem can model several70

real-world situations, where its formalism fits well with the most complex problems while

the academic studies considered practical situations as references. Because of the NP-

hardness of the majority of problems belonging to the knapsack problem family, any exact

method may be used for tackling some small and medium sized instances and so, the

availability of effective heuristics and meta-heuristics are of paramount importance.75

GMKPS is a more complex version of the well-known knapsack problem, where despite

its NP-hardness, to the best of our acknowledgement, there are few papers tackling this

problem in the literature. Among these papers, we cite Adouani et al. (2020) who designed

an efficient heuristic which combines variable neighborhood descent and integer linear pro-

gramming. The local search-based procedure was applied for assigning classes to knapsacks80

while the integer programming-based procedure was used for selecting the items in each

knapsack. Finally, their method was evaluated on benchmark instances of the literature,

where its provided results were compared to those achieved by the state-of-the-art Cplex

solver.

Adouani et al. (2019) designed a variable neighborhood search for solving the multiple85

choice knapsack problem with setup, another version of the the knapsack with setups.

The method is based upon hybridization of stochastic local search with solving a series

of small-sized subproblems with a tailored solver. On the one hand, the stochastic local

search applies the so-called perturbation strategy where some items are randomly removed

from the current solution. On the other hand, an induced reduced subproblem is then90

solved with the Cplex solver for completing the current partial solution. Both strategies

were embedded into an iterative search till matching a final predefined stopping criteria.

Finally, their method was experimentally analyzed on 120 instances, and their provided

results were compared to those achieved by the state-of-the-art Cplex solver.

Other studies have tackled several versions of the problems belonging to the knapsack95

family, where setups are considered as constraints. Among these problems, we cite a La-

grangean relaxation-based heuristic that has been designed in Amiri (2020), where the

method was tailored for large-scale instances of the knapsack problem with setup. His

method follows the standard adaptation of the Lagrangean relaxation, where a series of

local optima are localized with a descent method and converted into feasible solutions. The100

4



behavior of the method was evaluated on both standard set of benchmark instances and

huge-scale randomly generated instances (containing at most 500 classes and two million of

items); its achieved results were compared to those achieved by the best available method

in the literature and the state-of–the-art Cplex solver. For the same problem, Boukhari

et al. (2020) proposed a tailored local branching-based heuristic, where the method hy-105

bridizes both mixed linear relaxation and local branching. The mixed linear relaxation

was solved by calling a special black-box solver while the local branching tried to intensify

each solution at hand by adding a series of local-branching constraints. The performance

of that method was evaluated on benchmark instances of the literature and new large-scale

ones; its provided results were compared to those provide by the Cplex solver and the best110

available methods.

Chebil & Khemakhem (2015) studied the problem related to the knapsack problem with

setup. In their work, a straightforward of the classical dynamic programming procedure

was proposed for exactly solving that problem, where the algorithm performs in a pseudo-

polynomial time complexity. A tailored converting formulation was also considered in115

order to decrease the size of the storage capacity, which is often expensive when using

such type of approach. For the same problem, Khemakhem & Chebil (2016) designed a

special truncated tree-search for approximately solving it. The method applies an avoid

duplication technic which consists in reformulating the original problem into a particular

integer programming. The experimental part showed the effectiveness of the proposed120

method, especially its effect when using the avoiding duplication technic.

Furini et al. (2018) solved the continuous relaxation of that problem, where linear-time

algorithms were proposed for optimally solving it, and different integer linear programming

formulations were considered. As mentioned in their experimentations, their algorithms

outperform the dynamic programming method and the state-of-the-art Cplex solver.125

Della Croce et al. (2017) designed an optimal method that handles the structure of the

original model of the knapsack problem with setup. The search procedure employed a par-

titioning strategy, where the decision variables were split into two levels. Thus, a fixation

strategy has been added in order to reduce the subproblem at hand while the blackbox

solver is called for solving the resulting subproblem. In their experimental part, the au-130

thors pointed the competitiveness of their method, especially when comparing its provided

results to those reached by both the blackbox solver and the dynamic programming-based

approach.

5



Boukhar et al. (2020) studied the effect of the cardinality constraint when adding it

to an iterative local branching-based method. According to the used linear mixed integer135

model, a series of branches have been introduced to speed up the search process. It was

noticed that such constraints acted in an interesting way when some decision variables were

targeted. In their experimental part, the authors showed the interest of such a strategy,

especially on benchmark instances of the literature.

Yang (2006) studied the problem with three knapsack constraints, where branch-and-140

bound procedure was proposed. Their method applies the well-known greedy procedure

for providing a starting solution (lower bound) of the search process while a linear relax-

ation formulation was used for bounding the search with an upper bound for solving the

multiple-knapsack with setups. The experimental part showed that their method had a

good behavior, especially several problem instances.145

In Lahyan et al. (2019) the authors designed a multilevel matheuristic for tackling large-

scale instances related to the multiple knapsack problem with setup problem. The method

is based on two stages: (i) reducing the original problem into a series of subproblems,

where each class contains one item, (ii) the linear relaxation of the problems built were

solved such that a current feasible solution is collected. In order to enhance the quality of150

the solution at hand, a tabu strategy was applied. In their experimental part, the authors

pointed the competitiveness of their method when comparing the results provided by the

method to those reached by the best methods available in the literature.

Finally, Boukhari et al. (2022) designed a hybrid algorithm that combines a solution

resulted from solving a mixed integer linear relaxation and a series of single knapsack155

problems. Such a method was also reinforced by injecting a series of valid constraints

for realizing a powerful method. In their experimental results, the authors studied the

behavior of the method on benchmark instances of the literature. Its provided results

were compared to those obtained by the best methods published in the literature and the

state-of-the-art Cplex solver; several bounds have been reached.160

3. Local branching as a learning strategy for GMKPS

3.1. A basic variable neighborhood descent

On the one hand, a Variable Neighborhood Search (VNS) (Brimberg et al., 2000) is an

approximate descent method which has been extensively used for tackling complex prob-

lems arises in real-world applications and academic optimization problems. It is based165

6



upon two strategies, where tailored neighborhoods are often employed: (i) a stochastic de-

scent strategy used for enhancing the solution at hand until converging to a local optimum,

and (ii) a stochastic perturbation strategy (shakings), which diversify the search process.

On the other hand, the Variable Neighborhood Descent (VND) (Hansen & Mladenović,

2003) method may be viewed as a variant of VNS, where neighborhoods are replaced in a170

deterministic way. In this case, let Nk, k = 1, . . . , kmax, be the successive neighborhoods

to be explored by the method; thus, Algorithm 1 describes the main steps of the basic

VND, where neighborhoods are called in a deterministic way.

Algorithm 1 Steps of the basic VND
Require: An instance of the problem with a starting solution x of objective value z(x).
Ensure: A (near)optimal solution x? with its objective value z(x?).
1: Determine a series of neighborhood structures to use Nk, k = 1, . . . , kmax.
2: Set k = 1, and x? = x

3: repeat
4: Explore the current neighborhood Nk(x) and let x′ the best neighbor around x.
5: if x′ is enhanced when compared to x’s objective value z(x) then
6: Update x with x′, and restart the search with the initial neighborhood, i.e. k = 1

7: Update x? if x′ is better than x?.
8: else
9: increment the neighborhood index k

10: end if
11: until (k = kmax)
12: return x?

3.2. A reference solution for the descent method

Because the Descent Method (DM), proposed in this work, needs a starting reference175

solution, we then discusses how that solution can be provided throughout solving a linear

relaxation of PGMKPS . We do it by calling the following two-phase procedure:

Phase 1. By applying modifications on the original model PGMKPS according to the items

j of the class i with respect to profit and weight or p′it =
∑ni

j=1 pijt and w
′
it =

∑ni
j=1wijt,

∀i ∈ N , ∀t ∈ T , the problem P ′GMKPS may be rewritten as follows:180

P′GMKPS : max

T∑
t=1

N∑
i=1

p′itxit +

T∑
t=1

N∑
i=1

fityit (6)

s.t.
N∑
i=1

w′ixit + siyit ≤ Rt, ∀t ∈ T (7)

xit ≤ yit, ∀i ∈ N , ∀t ∈ T (8)

7



T∑
t=1

xit ≤ 1, ∀i ∈ N (9)

xit ∈ [0, 1], yit ∈ {0, 1}, ∀i ∈ N , ∀t ∈ T . (10)

To achieve the starting solution (Y ′, X ′) of PGMKPS , the resulting problem P ′GMKPS is

solved; that is resolved with a Truncated-Mixed Integer Programming (noted T-MIP),

where the Cplex solver is used.

Phase 2. Herein, all integral values related to Y are fixed, according to the solution

reached by the first phase above. Therefore,185

• Let α be the setup cost related to overall families such that α =
T∑
t=1

N∑
i=1

f?ity
′
it.

• Let β be the capacity consumption related to the family i such that βi = s?i y
′
it,

∀t ∈ T .

Thus, the reduced model PRed0
GMKPS can be written as follows:

PRed0
GMKPS : maximize

T∑
t=1

N∑
i=1

ni∑
j=1

pijtxijt + α (11)

s.t.
N∑
i=1

( ni∑
j=1

wijxijt + βi

)
≤ Rt, ∀t ∈ T (12)

xijt ≤ y′it , ∀ j ∈ {1, ..., ni}, ∀i ∈ N , ∀t ∈ T (13)
T∑
t=1

xijt ≤ 1 ∀i ∈ N . ∀ j ∈ {1, . . . , ni} (14)

xijt ∈ {0, 1},∀ j ∈ {1, ..., ni}, ∀i ∈ N , ∀t ∈ T . (15)

Let X be the optimal solution of PRed0
GMKPS , and (X0, Y 0) denote the (starting) solution190

of PGMKPS such that (X0, Y 0) =
(
X,Y ′

)
.

Algorithm 2 summarizes the main steps of the procedure described above, which (i)

reach a starting configuration for PGMKPS , and (ii) a complete feasible solution of the

proposed method, as we will see in the rest of the paper.

Algorithm 2 GMKPS’s starting procedure
1: Input. An instance of GMKPS.

2: Output. A starting solution for GMKPS.

3: Solve P’GMKPS by applying T-MIP and let (X ′, Y ′) be the achieved solution.

4: Set α =
T∑
t=1

N∑
i=1

f?ity
′
it, and βi = s?i y

′
it, ∀t ∈ T .

5: Solve tPRed0
GMKPS by calling T-MIP, and let X be its optimal solution.

6: return (X0, Y 0), where X0 = X, Y 0 = Y ′, and Z0 its objective value.

8



3.3. A basic local branching195

Local Branching (LB) is a specialized optimization technique that is used as an alter-

native to exact methods for solving hard combinatorial optimization problems. LB has

been first proposed in Fischetti & Lodi (2003), where its goal is to mimics an optimal

resolution of mixed integer programming problems (MIP). Such a technic was successfully

used for solving a series of combinatorial optimization (Akeb et al., 2011). The basic LB200

uses the principle of the branching conditions that are expressed through a series of linear

inequalities. Indeed, given the following MIP:

max cTx (16)

Ax ≤ b (17)

xj ≥ 0 ∀j ∈ G, xj integer (18)

xk ≥ 0 ∀k ∈ C (19)

xi ∈ {0, 1} ∀i ∈ B 6= 0, (20)

where N = {1, ..., n} is partitioned into the following sets (B,G,C) such that B is the

set of binary variables, and G and C denote the sets of integer and continuous variables,

respectively. Let x be a starting solution, considered as the reference solution of MIP, and

k ∈ N? be the kOpt neighborhood related to x corresponds to the set of feasible solutions

of MIP which satisfies the following additional local (branching) constraint:

∆(x, x̄) :=
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k, (21)

where S = {j ∈ B | x̄ = 1} and the term of the left-side of inequality (21) is the number

of binary variables switching their values, according to x, either from 1 to 0 or from 0 to

1. Assume that the cardinality of the binary set B is fixed. Then, the following additional

constraint is considered:

∆(x, x̄) :=
∑
j∈S

(1− xj) ≤ k′, (22)

where k′ = k
2 (halved). Adding constraint (22) represents a branching criterion within an

enumerative scheme for a MIP. In this case, according to both configurations, the space

of feasible solutions related to the current branching node can be divided according to the

following two complementary constraints:

∆(x, x̄) ≤ k or ∆(x, x̄) ≥ k + 1, (23)

9



where k is often provided experimentally. According to the value assigned to k in in-

equalities (23), the search process may be iterated by altering between normal and local

branches.205

A local branch is related to a complete resolution prior to branching for solving the

current problem with a normal branch. Whenever a new enhancement is reached (in the

local branch), local branching can iterate the resolution with the new achieved solution,

where a new constraint is added to the remaining normal branch. Following the same

branching principle, the last node is divided again in two branches by adding two new

disjunctive constraints, i.e.,

∆(x, x̄) > k, ∆(x, x̄′) ≤ k (local branch), (24)

and

∆(x, x̄) > k, ∆(x, x̄′) ≥ k + 1 (normal branch), (25)

where x̄′ denotes the new solution reached in the local branch.

The above search process is iterated until reaching a final solution which can be con-

sidered either as an optimal solution if all local branches are exactly solved or as an

approximate solution if some stopping criteria are used for curtailing the search process.

Figure 1: A local branching-based strategy

Fig 1 illustrates LB, where the triangles marked by “T" (for Tactical) corresponds to the210

branching subtrees to be explored through a standard “tactical" branching criterion. The

starting solution x̄A is an incumbent solution assigned to the root node. The right-branch

10



(node B) corresponds to the optimization within the kOpt neighborhood ν(x̄A, k), that is

performed through a tactical branching scheme covering (hopefully in short computing

time) to an optimal solution in the neighborhood, say x̄B. Whenever the last provided215

solution is improved, then it becomes as a new incumbent solution. The scheme is then

repeated to the left-branch (node C), where the exploration of ν(x̄B, k)\ν(x̄A, k) on the

left-branch (added to node D) provides a non-improved solution. The same process is

iterated till solving all subtrees hopping to reach a final solution which can be considered

either as an optimal solution or as a “near-optimal" solution (as described above).220

3.4. VND with a learning strategy

Most local searches use a single or two neighborhoods for improving the solution at

hand. Often, both 2-opt and 3-opt operators are considered as the more simplistic operators

which can be easily implemented for exploring the whole space search. Other sophisticated

methods may apply a decomposition strategy on the search space for (i) delimiting certain225

parts and (ii) to tighten both lower and upper bounds used, hopping to accelerate the

search process (for more details, the reader can refer to Brimberg et al. (2000), and Hanafi

et al. (2009)).

Herein, we propose a new exploration of the search space such that the constraints

used by LB are employed for exploring the whole space. Such a version can also be viewed230

as a special VND, where successive branches are added to successive local branches for

highlighting the solutions at hand. Indeed, on the one hand, one can observe that values

assigned to k (used by LB) may vary without searching for a tailored adjustment value for

LB’s convergence. On the other hand, such a variation on k is of great help to the VND

since it uses a series of neighborhoods that coincide with the branching constraints in LB.235

We are going non to discuss how both LB and VND can cooperate for highlighting the

solutions of GMKPS.

3.4.1. Constraints as neighborhood structures

Let (X ′, Y ′) be a feasible reference solution of PGMKPS provided by the constructive

method (cf. Algorithm 2). Let S1 and S0 be the sets related to Y ′ containing elements

fixed to one and zero respectively, i.e.,

S1 = {(i, t), y′it = 1} and S0 = {(i, t), y′it = 0}.

Then, for a given nonnegative integer parameter k, we define k-opt as the neighborhood

N(Y ′, k) of the solution Y ′; that is the set of the feasible solutions of PGMKPS satisfying240

11



the following additional constraint:

4(Y, Y ′) =
∑
i∈S1

(1− yit) +
∑
i∈S0

yit ≤ k. (26)

where the two terms on the left-hand side (of Eq. (26)) counts the number of binary

variables flipping their values (according to the solution Y ′) either from 1 to 0 or from 0

to 1, respectively.

Because VND may also uses the parameter k for varying the neighborhood struc-245

ture, from k1 to kmax, we then use the same kmax neighborhoods. Indeed, let N =

{Nk1 , ..., Nkmax} be the set of structures such that each structure Nki , k = 1, . . . , kmax

corresponds to the current problem P to solve augmented with the local constraint related

to the current LB, i.e., using Y as (a part of) the incumbent solution with its neighborhood

N(Y, k).250

According to the above description, the following steps can be used for summarizing

the principle of the approach:

1. Define N as the set of neighborhood structures, where N is reordered according to

the order of exploration which will be applied by the method.

2. Apply VND, where the exploration is used according to the established order of255

neighborhoods on N .

3. The search process jump from the next neighborhood structure whenever LB is not

able to improve the current incumbent solution.

4. The last two steps are iterated either all exploring the kmax neighborhood structures

or whenever the runtime limit is matched.260

Because LB needs a model to explore by injecting a series of valid and invalid con-

straints, we then describe the model used by the learning strategy. Let RPGMKPS be the

resulting program induced from PGMKPS by relaxing overall binary variables, i.e., setting

xijt ∈ [0, 1], and yit ∈ [0, 1],∀ j = 1, . . . , ni, ∀ i ∈ N , ∀ t ∈ T such that RPGMKPS is

given as follows:265

RPGMKPS : max

T∑
t=1

N∑
i=1

ni∑
j=1

pijtxijt +

T∑
t=1

N∑
i=1

fityit (27)

s.t.
T∑
t=1

N∑
i=1

( ni∑
j=1

wijxijt + siyit

)
≤ Rt, ∀t ∈ T (28)

xijt ≤ yit, ∀i ∈ N , ∀j ∈ {1, ..., ni}, ∀t ∈ T (29)

12



T∑
t=1

xijt ≤ 1, ∀i ∈ N , ∀j ∈ {1, ...ni} (30)

xijt ∈ [0, 1], yit ∈ [0, 1], ∀i ∈ N , ∀j ∈ {1, ..., ni}, ∀t ∈ T . (31)

To provide a first approximate solution (X,Y ) for the original problem PGMKPS , we first

solve RPGMKPS . Indeed, in this work, that problem is resolved by using the well-known

Simplex method. In this case, let dt be the number of yit of the knapsack t in the component

Y with non-negative values. Therefore, one can observe that the following constraint is

valid for the original problem PGMKPS :

N∑
i=1

yit ≤ dt, ∀ t ∈ T . (32)

Hence, by adding constraint (32) to the original problem PGMKPS , and by relaxing only

the variables xijt, we establish the following program:

RY
GMKPS : max

T∑
t=1

N∑
i=1

ni∑
j=1

pijtxijt +
T∑
t=1

N∑
i=1

fityit

Subject to
N∑
i=1

yit ≤ dt, ∀ t ∈ T

(2), (3), and (4)

xijt ∈ [0, 1], yit ∈ {0, 1}, ∀ i ∈ N , ∀ j ∈ {1, ..., ni}, ∀t ∈ T .

• First, fix all decision variables yit with integral values in the solution related to

RY
GMKPS .

• Second, let PRed1
GMKPS be the reduced (sub)problem whose decision variables are xijt,270

which are related to all decision variables yit fixed to 1.

• Finally, the optimal solution of PRed1
GMKPS induces a completed solution for the original

problem PGMKPS .

According to the resulting program RY
GMKPS , the following steps are considered:

1. The relaxation RPGMKPS is optimized by using the Simplex method. Then, we275

collect the current primal solution (X,Y ) representing the primal configuration.

2. Let D be the vector of cardinality T representing the number of decision variables

associated to yit 6= 0 according to each period t.

3. Solve RY
MCKS with LB:

∆(Y, Y ′) ≤ k (left-branch) and ∆(Y, Y ′) ≥ k + 1 (right-branch),

13



by using a Truncated-Mixed integer programming solver − T-MIP (herein, the Cplex

solver is used by fixing a runtime limit as a stopping condition). In this case, let280

(X ′, Y ′) be the achieved solution.

4. Set α =

T∑
t=1

N∑
i=1

f?ity
′
it, and βi = s?i y

′
it, ∀t ∈ T .

5. Consider PRed1
GMKPS as the resulting reduced program by fixing all elements yit.

6. Finally, set X as the optimal solution of PRed1
GMKPS . Thus, (X ′′, Y ′′) is a feasible

solution of PGMKPS such that (X ′′, Y ′) =
(
X,Y ′

)
.285

Algorithm 3 VND-LB Algorithm
1: Input. An instance of GMKPS.
2: Output. A (near)optimal solution S? = (X?, Y ?) with objective value z?.
3: Let S0 = (X0, Y0) be the initial provided solution (cf. Algorithm 2).
4: Set S? = S0, S′ = S0, and z? = z′S′ = zS0 .
5: Set Solve = true and k = k0.
6: while

(
the stopping condition is not performed

)
do

7: while
(
Solve

)
do

8: Solve RY
GMKPS with LB:

∆(Y, Y ′) ≤ k (left-branch); ∆(Y, Y ′) ≥ k + 1 (right-branch).
9: Let S′′ = (X ′′, Y ′′) be the solution reached with its objective value z′′ = zS′′ .

10: Set α =

T∑
t=1

N∑
i=1

f?ity
′
it, and βi = s?i y

′
it, ∀t ∈ T .

11: Solve PRed1
GMKPS , and let X̄ be its optimal solution.

12: Set S′′ = (X ′′, Y ′′) the solution: X ′′ = X̄ and Y ′′ denotes RY
GMKPS ’s solution.

13: Set z′′ = zS′′ .
14: if (z′′ > z∗) then
15: Set S? = S′′, z∗ = z′′.
16: Set S′ = S? and k = k0.
17: else
18: Solve=false, and increment k.
19: end if
20: end while
21: Set Solve=true, remove all branches and set S′ = S?.
22: end while
23: return (X?, Y ?) with its objective value z?.

3.4.2. An overview of the proposed method

Algorithm 3 describes the main steps of the proposed method that combines VND and

LB, where the local branching is used as a learning strategy. It is composed of two main

loops: an internal loop (from line (7) to line (20)), and a global loop (from (6) to line

(22)). First, the algorithm starts by calling Algorithm 2 for computing the first incumbent290

14



solution. Next, the internal loop (from line 7 to line 20) represents the iterative solve, where

the relaxed problem RY
GMKPS is first solved with a T-MIP with the additional constraint

∆(Y, Y ′) ≤ k; in this case, a runtime limit is fixed to an equivalent of 3×T ×N for T-MIP

(that is a value fixed before several tunings and which provides a balance between the final

reached bounds and the final runtime). Herein, a feasible solution (X ′′, Y ′′), with objective295

value z′′, is provided (line 13), where its component X ′′ is the result of the reduced model

PRed1
GMKPS (line 11) while the component Y ′′ is related to the solution of the relaxed problem

P’GMKPS (line 8). On the one hand, the solution (X ′′, Y ′′) at hand is stored in (X?, Y ?)

and (X ′, Y ′) (lines 15 and 16) whenever its objective value z′′ is better than z? (related to

the best solution (X?, Y ?) find so far), and the search process continues with the restarted300

neighborhood (line 16). On the other hand, the provided solution is not improved and so,

the internal loop is stopped (line 21), and the algorithm restarts the internal loop with

the best solution (X?, Y ?) and with a new neighborhood. Such a processes is iterated

till matching the stopping condition of the global loop; that is fixed to a global number

of iterations related to the size of the final neighborhood (herein, k0 was fixed to 2 for305

representing a 2-opt operator while the global stopping condition kmax was fixed to 7; of

course, we tried to find a balance between the quality of the solutions reached and the

average runtimes consumed, as discussed in the experimental part in Section 4).

4. Computational results

To evaluate the effectiveness of the proposed method on benchmark instances, three310

sets, where each set contains 120 instances (these instances were extracted from Adouani

et al. (2020)). Their optimal objective values are known(1), and were generated according

to a standard generator used in Adouani et al. (2020). The value of T varies in the discrete

interval {5, 10, 15, 20}, the value of N belongs to the discrete interval {10, 20, 30}, the

number of items of each period ni varies the discrete intervals [40, 60], [60, 90] and [90, 110]315

according to three sets. The used generator is summarized in what follows (according to

the couple (N,T )):

• The profits and weights were generated as follows: wij belongs to the discrete interval

[10, 10000] while pijt = wij + e0 such that e0 is uniformly distributed in [0, 10].

1These instances can be downloaded from https://goo.gl/zK6yZn

15



• si =

ni∑
j=1

aij , fit =

ni∑
j=1

−cijt × e, and Rt = 1
2

(
max
1≤i≤N

{ ni∑
j=1

aij + e1
})

, where e ∈320

[0.15, 0.25] and e1 ∈ [0,
∑ni

j=1 aij ].

We note that the proposed method was coded in C and run, with the Cplex solver, on the

Intel Pentium Core i3 with 2 GHz.

4.1. Quality of the starting reference solution

In the preliminary study, the behavior of Algorithm 2 (noted Start) used for providing325

the starting reference solution. This algorithm is evaluated on overall instances of the three

sets described above (containing 450 instances).

On the one hand, Table 1 reports the results achieved by Start, where columns 1, 2 and

3 report the instance information, column 4 (resp. column 5) displays the average objective

value (resp. average upper bound), over the ten instances of each subgroup, provided by330

the Cplex solver (noted zCplex and UBCplex, respectively), and column 6 reports the average

objective value achieved by Start (noted zStart).

On the other hand, because we try to measure the gap between the provide solution

values and the upper bound, we then reported the average experimental approximation

ratio of each subgroup (containing 10 instances) in Table 2; that is computed as follows,

for a maximization problem.:

A(I) =
Start(I)

UBCplex(I)
,

where I is a given instance. Table 2 reports the average approximation ratios of Cplex

(column 4 under ACplex), and Start (column 5 under AStart).

We note that because some upper bounds published in Adouani et al. (2020) are wrong335

(these instances are underlined and marked with a dag symbol “†" under UBCplex in Table 1

and in Appendix (Tables from 7 to 9), and since the global average bounds for each sub-

group are impacted by these errors), we then re-run for one hour the Cplex solver on overall

instances and reported the values providing the maximum value for the corresponding

instance.340

In what follows, we comment on the results of Tables 1 and 2 :

• Over all treated instances, Algorithm 2 (Start) is able to achieve a significant exper-

imental approximation ratio (Table 2) for the three sets; that is equal to 0.976510

(the last line of Table 2) while the Cplex solver achieves an experimental approxi-

mation ration of 0,968866; it represents a gap closest to 1.008% (it means that Start345

performs better than the Cplex solver).

16



Gr. #Inst. Cplex Solver Start
zCplex UBCplex zStart

ni ∈ [40, 60] 5 10 759993.3 760015.6 759994.0
20 790345.3 793883.0 790962.7
30 912772.4 917130.1 913951.0

10 10 1429753.7 1495255.2 1447150.1
20 1588624.0 1610699.5 1591542.3
30 1876651.0 1891855.6 1878103.8

15 10 2008365.5 2124334.8 2038597.1
20 2280089.3 2340844.2 2287250.7
30 2792713.1 2835280.0† 2802630.7

20 10 2231607.3 2337954.6 2257576.8
20 2983649.8 3103869.9† 3006293.8
30 3649960.9 3767380.2 3678350.3

Average 1942043.8 1998208.6† 1954366.9

ni ∈ [60, 90] 5 10 1166559.3 1166569.4 1166559.3
20 1227446.3 1234969.8 1228019.1
30 1142283.5 1149170.6 1144936.7

10 10 2361932.7 2417207.1 2368030.8
20 2470204.1 2508189.1 2472903.3
30 2273894.4 2322243.2 2286305.0

15 10 3193044.4 3375682.7† 3234314.1
20 3652270.4 3773497.3 3673726.8
30 3403684.0 3521135.5 3419998.1

20 10 3404118.2 3556659.6 3424195.3
20 4743392.9 5027681.3† 4798403.0
30 4373895.8 4708155.2† 4504401.4

Average 2784393.8 2896763.4† 2810149.4

ni ∈ [90, 110] 5 10 1624998.0 1625413.7 1625001.9
20 1616004.7 1616114.2 1616013.2
30 1703710.8 1709990.5 1703833.4

10 10 3077445.3 3187769.9 3089138.8
20 3121688.3 3210373.0 3131089.8
30 3325366.6 3467513.4 3393333.8

15 10 4303341.9 4604036.1† 4366769.7
20 4760776.8 4991858.3 4778462.7
30 4869781.4 5245153.1 5089593.4

20 10 4512570.3 4757056.1 4537007.5
20 6289943.5 6672222.8† 6332641.7
30 6472993.5 6998377.3† 6729051.5

Average 3806551.8 4007156.5† 3865994.8

Global Av. 2839245.07 2967376.168 2876837.0

Table 1: Solution quality of the starting reference solution on overall instances.

• Despite the simplicity of Start, the alternative model used by the algorithm is able to

provide a good average experimental approximation ratio which varies from 0.948466

(Group ni ∈ [90, 110] #Inst. 15.10) and 0.999991 (Group ni ∈ [60, 90] #Inst. 5.10).

We notice that In some cases, the average value becomes better for large instances.350

Hence, it can be encouraging to predict a combination of such a model with local

branching-based strategy.

• Finally, Start’s average global objective value, over the three sets instances (the

last column and the last line of Table 1) remains interesting. Indeed, in this case,

Cplex achieves an average objective value of 2839245.07 whereas the Start provides355

a slightly better average value of 2876837.0. .

Figure 2 illustrates the variation of the average experimental ratios provided by the

17



Set #Inst. ACplex AStart

ni ∈ [40.60] 5 10 0.999971 0.999972
20 0.995544 0.996322
30 0.995249 0.996534

10 10 0.956194 0.967828
20 0.986294 0.988106
30 0.991963 0.992731

15 10 0.945409 0.959640
20 0.974046 0.977105
30 0.984987 0.988485

20 10 0.954513 0.965620
20 0.961268 0.968563
30 0.968833 0.976368

Average 0.971892 0.978060

ni ∈ [60.90] 5 10 0.999991 0.999991
20 0.993908 0.994372
30 0.994007 0.996316

10 10 0.977133 0.979656
20 0.984856 0.985932
30 0.979180 0.984524

15 10 0.945896 0.958121
20 0.967874 0.973560
30 0.966644 0.971277

20 10 0.957111 0.962756
20 0.943455 0.954397
30 0.929004 0.956723

Average 0.961209 0.970100

ni ∈ [90.110] 5 10 0.999744 0.999747
20 0.999932 0.999937
30 0.996328 0.996399

10 10 0.965391 0.969060
20 0.972376 0.975304
30 0.959006 0.978607

15 10 0.934689 0.948466
20 0.953708 0.957251
30 0.928435 0.970342

20 10 0.948606 0.953743
20 0.942706 0.949105
30 0.924928 0.961516

Average 0.949938 0.964773
Global Av. 0.968866 0.976510

Table 2: Variation of the average experimental approximation ratios of Start and Cplex.

reference solution on the three sets instances containing 120 instances each. The same

figure shows the average experimental proximation ratios achieved by both Cplex and

VND-IP. In this case, one can observe that the curve related to the results reached by360

Start is better than those of Cplex and VND-IP.

4.2. Performance of VND-LB

In this section, VND-LB’s behavior is analyzed on the three sets containing 120 in-

stances each (each set is divided into 12 subgroups) representing a total of 360 small,

medium and large-scale benchmark instances of the literature.365

First, its results are compared to those of the reference solution (provided by the

first phase Start). Second and last, VND-LBs’ bounds are compared to those published

in Adouani et al. (2020): a Variable Neighborhood Descent with Integer Programming

(noted VND-IP), and those reached by the state-of-the-art Cplex solver (noted Cplex).

18



Figure 2: Variation of the average experimental approximation ratio of the starting solution compared to

the Cplex’s lower bound on overall subgroups.

Gr. #Inst. Start without Local Branching Start with Local Branching
zStart zStart−LB

ni ∈ [40.60] 5 10 759994 759994.1
20 790962.7 790962.7
30 913951 913952.1

10 10 1447150.1 1447155.1
20 1591542.3 1591559.0
30 1878103.8 1878103.8

15 10 2038597.1 2038625.9
20 2287250.7 2287263.8
30 2802630.7 2802630.7

20 10 2257576.8 2257599.1
20 3006293.8 3006493.2
30 3678350.3 3678350.3

Average 1954366.94 1954390.82

ni ∈ [60.90] 5 10 1166559.3 1166559.3
20 1228019.1 1228019.1
30 1144936.7 1144936.7

10 10 2368030.8 2368030.8
20 2472903.3 2472903.4
30 2286305 2286305.1

15 10 3234314.1 3234320.8
20 3673726.8 3673741.1
30 3419998.1 3420001.4

20 10 3424195.3 3424195.3
20 4798403 4798403.4
30 4504401.4 4504405.7

Average 2810149.41 2810151.84

ni ∈ [90.110] 5 10 1625001.9 1625001.9
20 1616013.2 1616013.2
30 1703833.4 1703833.4

10 10 3089138.8 3089142.4
20 3131089.8 3131090.4
30 3393333.8 3393337.9

15 10 4366769.7 4366774.2
20 4778462.7 4778463.6
30 5089593.4 5089593.9

20 10 4537007.5 4537007.5
20 6332641.7 6332645.3
30 6729051.5 6729051.5

Average 3865994.78 3865996.27

Table 3: Effect of the local branching strategy on the iterative algorithm.

4.2.1. Effect of the local branching strategy370

In this section, we study the effect of the local branching strategy when combined

with the the reference solution provided by solving the mixed integer programming. We

19



do it by displaying, for each 12 subgroups tested (containing a total of 360 instances),

by displaying the average bound achieved by both Start and VND-LB. Indeed, Table 3

reports these bounds, where column 4 displays those of Start without local branching375

(under zstart) and column 5 tallies those of VND-LB (Start with Local Branching - under

zstart−LB). Now, we comment on the results of Table 3:

1. One can observe that VND-LB is able to provide a better average bounds for the

three sets of instances, i.e, VND-LB achieves an average bound of 1954390.82 for

the first set with ni ∈ [40.60] (resp. 2810151.84 for ni ∈ [60.90], and 3865996.27 for380

ni ∈ [90.110]) while Start reaches the average value of 1954366.94 (resp 2810149.41,

and 3865994.78).

2. Over all tested subgroups, VND-LB dominates Start in 8 occasions over the ten

subgroups of the first set with ni ∈ [40.60] (resp. in 7 occasions over the ten subgroups

for the two other sets).385

This first study shows the positive effect of the local branching in the research process.

Of course, in order to confirm this study, we will later carry out a statistical analysis for

comparing the behavior of both Start and VND-LB.

4.2.2. Comparing VND-LB with other methods

Because the Cplex solver is a specialized optimal method, we then tested it using two390

tunings, where each version was fixed to one hour: (i) automatic search method and, (ii)

dynamic search; for each of these versions, the RINS heuristic was fixed to 100); thus, the

best objective value achieved by these versions are retuned as the best solution value; the

RINS heuristic was setting equal to 100 for these versions respectively); in this way, these

versions provides the best objective value as the best solution value of Cplex. We note395

that all results were extracted from Adouani et al. (2020) and we corrected their upper

bounds when necessary (as underlined above: the wrong upper bounds of each instance is

underlined and marked with the symbol “†"); we therefore analyze the results provided by

VND-LB to those reached by the aforementioned algorithms.

Table 4 reports the average values provided by Cplex, VND-IP and VND-LB on the400

three sets of instances (containing 12 subgroups). Columns from 1 to 3 (on the left-side)

report the instance’s informations, columns 4 and 5 tally both upper and lower bounds

reached by the Cplex solver for thees instances, column 6 displays the bound (zVND−IP)

extracted from Adouani et al. (2020) and column 7 displays the objective value achieved by

20



the proposed method VND-LB (zVND−LB). For each set of instances, the last line displays405

the average values, over the 120 instances of the set, according to each method.

Gr. #Inst. Cplex Solver VND-IP VND-LB

zCplex UBCplex zV ND−IP zV ND−LB

ni ∈ [40, 60] 5 10 759993.3 760015.597 759994.4 759994.1

20 790345.3 793882.96 790961.3 790962.7

30 912772.4 917130.065 913951.0 913952.1

10 10 1429753.7 1495255.17 1447095.6 1447155.1

20 1588624 1610699.51 1591549.1 1591559.0

30 1876651 1891855.65 1878103.8 1878103.8

15 10 2008365.5 2124334.77 2038186.2 2038625.9

20 2280089.3 2340844.23 2287007.8 2287263.8

30 2792713.1 2835280.01 2801237.3 2802630.7

20 10 2231607.3 2337954.61 2257610.9 2257599.1

20 2983649.8 3103869.94 3003850.7 3006493.2

30 3649960.9 3767380.2 3678277.5 3678350.3

Average 1942043.8 1998208.6 1953985.5 1954390.8

ni ∈ [60, 90] 5 10 11166559.3 1166569.37 1166558.0 1166559.3

20 1227446.3 1234969.8 1228019.1 1228019.1

30 1142283.5 1149170.63 1144936.7 1144936.7

10 10 2361932.7 2417207.15 2367910.5 2368030.8

20 2470204.1 2508189.08 2472900.0 2472903.4

30 2273894.4 2322243.19 2286305.0 2286305.1

15 10 3193044.4 3375682.75 3232684.8 3234320.8

20 3652270.4 3773497.32 3673529.4 3673741.1

30 3403684 3521135.53 3419810.9 3420001.4

20 10 3404118.2 3556659.62 3424059.9 3424195.3

20 4743392.9 5027681.29 4794759.1 4798403.4

30 4373895.8 4708155.22 4502885.9 4504405.7

Average 2784393.8 2896763.4 2809529.9 2810151.8

ni ∈ [90, 110] 5 10 1624998 1625413.7 1625001.9 1625001.9

20 1616004.7 1616114.24 1616013.2 1616013.2

30 1703710.8 1709990.54 1703833.4 1703833.4

10 10 3077445.3 3187769.89 3089097.3 3089142.4

20 3121688.3 3210372.97 3131083.9 3131090.4

30 3325366.6 3467513.42 3394182.1 3393337.9

15 10 4303341.9 4604036.05 4356089.0 4366774.2

20 4760776.8 4991858.27 4778300.3 4778463.6

30 4869781.4 5245153.14 5089501.9 5089593.9

20 10 4512570.3 4757056.07 4538967.5 4537007.5

20 6289943.5 6672222.81 6331424.1 6332645.3

30 6289943.5 6998377.31 6726455.3 6729051.5

Average 3791297.6 4007156.5 3864995.8 3865996.3

Table 4: The average objective values achieved by Cplex, VND-IP and VND-LB on the three sets.

Next, we comment on the results of Table 4, where we compare the (average) lower

bounds reached (over the three sets of instances) by the proposed method VND-LB to

those reached by the other methods.

1. VND-IP versus Cplex: one can observe that, in 35 occasions over the 36 groups,410

VND-IP outperforms the Cplex solver while its fails only in one occasion.

21



2. VND-LB versus Cplex: VND-LB dominates the Cplex in 35 occasions over the 36

groups, and it matches the average lower bound reached by Cplex in one occasion.

In this case, VND-LB realizes a percentage of 94.44% of the better average lower

bounds.415

3. VND-LB versus VND-IP: on the one hand, 26 better average lower bounds are pro-

vided by VND-LB (values, in bold-space), its fails in 4 occasions, and it matches in

6 occasions the rest of values. On the other hand, the total average results achieved

by VND-LB is greater than that achieved by VND-IP; indeed, it reaches an aver-

age global value of 1954390.817, 2810151.842 and 3865996.267 for set 1, 2 and 3420

respectively (as observed in column 7, under zVND−LB) whereas VND-IP provides

an average value of 1953985.47, 2809529.9 and 3864995.8 for set 1, 2 and 3 respec-

tively (column 6, under zVNS−IP). Thus, VND-LB is able to generate 72.22% of new

bounds and it matches 27.77% of the rest of the bounds.

Gr. #Inst. VND-IP VND-LB
ni ∈ [40, 60] 5 10 58.62 55.4

20 53.24 56.4
30 30.29 56.30

10 10 274.41 318.70
20 121.08 324.10
30 77.83 299.50

15 10 533.15 362.00
20 308.29 347.20
30 262.24 315.70

20 10 222.64 304.60
20 559.77 383.00
30 198.06 345.30

Average 224.97 264.01

ni ∈ [60, 90] 5 10 68.48 63.50
20 49.08 86.40
30 33.88 135.50

10 10 176.94 300.60
20 102.21 332.50
30 95.82 354.80

15 10 516.53 361.90
20 275.67 358.50
30 320.25 355.10

20 10 332.23 275.60
20 544.07 442.60
30 496.41 329.60

Average 250.96 283.04

ni ∈ [90, 110] 5 10 40.81 92.5
20 57.33 104.80
30 47.73 141.60

10 10 209.98 325.50
20 132.15 334.00
30 119.33 345.90

15 10 780.88 465.50
20 277.81 345.50
30 216.87 366.30

20 10 262.99 296.10
20 515.60 408.40
30 434.86 381.70

Average 258.03 300.65

Table 5: Variation of the average runtimes related to each subgroup for VND-IP and VND-LB.

According to the above observation (Table 4), in term of relative improvement (gap),425

VND-LB provides a global average gap of 1000.44 when compared to VND-IP’s average

value, and it becomes more significant when compared to that reached by the Cplex solver

22



(it becomes equal to 74698.67).

We can observe that for the average runtimes consumed by both VNS-IP and VND-LP

remains difficult to do. We then tried to make an indirect comparison, and as VND-IP is430

a stochastic algorithm, we readjusted its average execution time for twelve trials (often,

for stochastic methods, at least thirteen trials should be considered for picking the best

solution value with the global average value for each instance), where the results reported

in Adouani et al. (2020) represents the best solution value over all trials considered. In

this case, Table 5 reports the average runtime related to each subgroup for VND-IP and435

VND-LB. Globally, both methods consume a closest average runtimes, even if the VND-LB

consumes slightly more global average runtime.

Figure 3: Variation of VND-LB’s average time on overall subgroups of benchmark instances.

From the aforementioned table, Figure 3 illustrates the variation of the average runtimes

consumed by VND-LB for achieving the results reported in Table 4, on the 36 subgroup

of instances. In this case, one can observe that VND-LB remains competitive, overall440

VND-LB’s runtime is not an exponential function depending on size of the instance to

be solved, but it has the appearance of a linear function. We believe that VND-LB can

be improved by some preprocessing procedures, such as those used for the so-called single

knapsack problem, where some decision variables must be set to optimality before starting

the resolution of the reduced problem.445

4.2.3. A statistical analysis

Second, in order to evaluate the behavior of the reference solution Start, VND-IP,

Cplex solver and the proposed VND-LB, we propose a statistic analysis using the sign

test and the Wilcoxon signed-rank test statistics. The sign test is based on the number of

non-negative (> 0) and negative (< 0) gaps (related to the lower bounds achieved by each450

algorithm) whereas the Wilcoxon signed-rank test is considered as an alternative study to

23



determine whether two dependent samples were selected from populations with the same

distribution. Herein, we should determine if an algorithm, noted A, provides better bounds

than another one, noted B (we then inverted the sign of the test). Indeed, let SolA and

SolB denote their achieved values), respectively. Then, we can set (i) the hypothesis H0:455

SolA − SolB = D to express that algorithm A performs better than B (a maximization

problem) and, (ii) the hypothesis Ha: algorithm B outperforms A to express the rejection

of the hypothesis H0. Thus, we can consider that the higher the average bound and the

greater the number of better bounds, the better the corresponding algorithm.

Table 6: p-values for Sign test and Wilcoxon rank test on overall tested instances with the significance
level α = 5%;

Start vs
VND-IP vs Cplex VND-LB vs Cplex VND-IP VND-LB VND-IP vs VNS-LB

p-value (sign test) < 0.0001 < 0.0001 < 0.0001 1.000 1.000
N+ 302 304 148 0 14
N= 53 55 194 304 191
N− 5 1 18 56 155
p-value (Wilcoxon test) < 0.0001 < 0.0001 < 0.0001 1.000 1.000

Table 6 shows the statical analysis on overall instances by using both the sign test460

and the sign rank test (the detailed results containing the average bounds of VND-LB are

reported in Appendix (Tables from 7 to 9). Columns from 2 to 6 display the statistical

results between VND-LB, VND-IP, Cplex and Start: line 1 (resp. line 4) tallies the p-value

corresponding to the sign test (resp. rank sign test) and line 2 reports the number of times

that the first algorithm dominates the second one (resp. line 3 reports the number of times465

that the first algorithm is dominated by the second one).

From Table 6 (resp. Tables 3 and 4), one can observe what follows:

• VND-IP vs Cplex: the p-value related to the sign test (resp. Wilcoxon signed-rank

test) is smallest to the significance level α = 0.05, indicating that VND-IP performs

better than Cplex (accepting the hypothesis H0). Throughout all instances, the470

number of occasions that VND-IP, when compared to Cplex, matches the bounds

(the values related to N− and N+ under VND-IP vs Cplex) is equal to 302 and 5

while in 53 occasions both methods match the same lower bound.

• VND-LB vs Cplex: VND-LB has a better behavior than that of Cplex. Indeed, the

p-value of the sign test and Wilcoxon rank test are smallest than 0.0001; i.e. the475

hypothesis H0 is approved. In this case, VND-LB outperforms the Cplex solver in

304 occasions (N+), it matches the the same bounds in 55 occasions, and it fails in

one occasion (N−).

24



• Start vs VND-IP: Start remains competitive when compared to VND-IP. In this case,

the p-value related to both sign test and Wilcoxon test is smallest to the significance480

level α = 0.05, which means that Start dominates VND-IP (accepting the hypothesis

H0). In this case, Start provides 148 new bounds (N+), it matches 194 bounds, and

it fails in 18 occasions. In term of percentage, Start is able to realize 89.16% of new

(better) bounds (out of the matched bounds) when compared to those reached by

VND-IP.485

• Start vs VND-LP: VND-LB has a better behavior than that of Start. Indeed, the p-

value related to both sign test and Wilcoxon test is greatest than to the significance

level α = 0.05; it means that VND-LB performs better than Start (rejecting the

hypothesis H0). In this case, VND-LB provides 56 new bounds (N+) and it matches

304 bounds. Overall instances tested, VND-LB provides a percentage of 15.56% of490

improved bounds.

• VND-LB vs VND-IP: VND-LB is very competitive when compared to VND-IP for

overall instances. Indeed, the p-value related to both sign test and Wilcoxon test is

greatest to the significance level α = 0.05, indicating that VND-LB performs better

than VND-IP (rejecting the hypothesis H0). In this case, VND-LB is able to achieve495

155 new bounds (N−), it matches 191 bounds, and it fails in 14 occasions. We note

that in term of percentage, the proposed VND-LB discovers 43.05% of new bounds.

Figure 4: Illustration of the p-value related to (a) VNS-IP vs Cplex, (b) VND-LP vs Cplex, and (c) VNS-IP

vs VND-LP.

Figure 4 shows the variation of the p-values related to both Sign test and Wilcoxon

signed-rank test when comparing each pair of algorithms, i.e., (VND-IP, Cplex), (VND-LB,

Cplex) and (VND-IP, VND-LB). First, Figure 4.(a) illustrates the superiority of VND-500

IP when compared to Cplex, while the overall average values achieved for VND-IP are

better (see Table 4, line Average, column under zVND−IP). Second, Figures 4.(b) shows the

25



superiority of VND-LB when compared to Cplex (see Table 4, line Average, column under

zVND−LP). Third and last, Figure 4.(c) illustrates the p-value related to the hypothesis

H0 : SolVND−IP−SolVND−LB > 0; in this case, one can observe that the hypothesis H0 is505

rejected, which means that VND-LB dominates VND-IP.

Finally, Figure 5.(a) illustrates the variation of the average gap achieved by VND-LB

which is related to AVND−LB−AV ND−IP (normalized). Globally, one can observe that the

average gaps are much better for VND-LB than those achieved by VND-IP, which means

that VND-LB is a competitive method for the problem studied in this paper. In this case,510

VND-LB achieves 23 non-negative values over the 36 subgroups; in term of percentage, it

represents a percentage of 63.89% of the best average gaps.

Figure 5: Variation of the average gap related to both VND-LB and VNS-IP on (all) subgroups.

5. Conclusion

In this paper the generalized multiple-choice knapsack problem with setup is solved with

an iterative descent method. The main idea used is based upon solving a series of reduced515

subproblems built by adding a series of cardinality constraints. First, a starting reference

solution was built by solving a special mixed integer programming. Second, a learning

strategy using branching constraints was applied for iteratively highlighting the quality

of the solutions ate hand. The method mimics a variable descent method combined with

local branching. Finally, the designed method was experimentally evaluated on benchmark520

instances of the literature, and its obtained results were compared to those reached by a

26



recent method of the literature and the state-of-the-art Cplex solver. New bounds have

been discovered.

As the studied problem belongs to the knapsack problem family, there are plenty pos-

sibilities for further investigation involving efficient methods able to enhance the proposed525

method. First, we believe that some preprocessing procedures can be tailored for the stud-

ied problem, where tights bounds and valid constraints can be added for reducing the size

of initial instance. Such a method may be viewed as hybrid method, where a neighborhood

decomposition procedure can be combined with a fix and solve procedure. Second, Ben-

ders decomposition may be applied for the studied problem, where both types of variables530

may cooperate for providing an iterative method based upon injecting successive Benders

constraints. Finally, we believe that a parallel approach may be designed as another di-

rection of research. In this case, because several neighborhoods are used to intensify the

search process, we believe that a cooperative parallel method can improve the quality of

the solutions while reducing the runtime of the method.535

References

Adouani, Y., Jarboui, B., & Masmoudi, M. (2019). A variable neighborhood search with

integer programming for the zero-one multiple-choice knapsack problem with setup. In

A. Sifaleras, S. Salhi, & J. Brimberg (Eds.), Variable Neighborhood Search (pp. 52–166).

Cham": Springer.540

Adouani, Y., Jarboui, B., & Masmoudi, M. (2020). Efficient matheuristic for the general-

ized multiple knapsack problem with setup. European Journal of Industrial Engineering ,

14 , 715–741. doi:10.1504/EJIE.2020.109906.

Akeb, A., Hifi, M., & Ould Ahmed Mounir, M. (2011). Local branching-based algorithms

for the disjunctively constrained knapsack problem. Computers & Industrial Engineer-545

ing , 60 , 811–820. doi:https://doi.org/10.1016/j.cie.2011.01.019.

Amiri, A. (2020). A lagrangean based solution algorithm for the knapsack problem with

setups. Expert Systems with Applications, 143 , 113077. doi:https://doi.org/10.1016/

j.eswa.2019.113077.

Boukhar, S., Dahmani, I., & Hifi, M. (2020). Effect of valid cardinality constraints in local550

branching: the case of the knapsack problem with setup. Information Technology in

Industry , 8 , 8–20.

27



Boukhari, S., Dahmani, I., & Hifi, M. (2020). Local branching strategy-based method for

the knapsack problem with setup. In In Proceedings of the 4th International Conference

on Computer Science and Information Technology (pp. 65–75). David C. Wyld et al.555

(Eds) volume 10(16). doi:10.5121/csit.2020.101606.

Boukhari, S., Dahmani, I., & Hifi, M. (2022). Computational power of a hybrid algorithm

for solving the multiple knapsack problem with setup. In K. Arai (Ed.), Intelligent

Computing (pp. 154–168). Cham: Springer.

Brimberg, J., Hansen, P., Mladenovic, N., & Taillard, E. (2000). Improvements and com-560

parison of heuristics for solving the uncapacitated multisource weber problem. Opera-

tions Research, 48 , 444–460. doi:10.1287/opre.48.3.444.12431.

Chebil, K., & Khemakhem, M. (2015). A dynamic programming algorithm for the knapsack

problem with setup. Computers & Operations Research, 64 , 40–50. doi:https://doi.

org/10.1016/j.cor.2015.05.005.565

Chen, M., Wu, C., Tang, X., Peng, X., Zeng, Z., & Liu, S. (2019). An efficient determin-

istic heuristic algorithm for the rectangular packing problem. Computers & Industrial

Engineering , 137 , 106097. doi:https://doi.org/10.1016/j.cie.2019.106097.

Della Croce, F., Salassa, F., & Scatamacchia, R. (2017). An exact approach for the 0-1

knapsack problem with setups. Computers & Operations Research, 80 , 61–67. doi:https:570

//doi.org/10.1016/j.cor.2016.11.015.

Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming , 98 , 23–47.

doi:10.1007/s10107-003-0395-5.

Furini, F., Monaci, M., & Traversi, E. (2018). Exact approaches for the knapsack problem

with setups. Computers & Operations Research, 90 , 208–220. doi:https://doi.org/575

10.1016/j.cor.2017.09.019.

Hanafi, S., Lazić, J., Mladenović, N., & Wilbaut, C. (2009). Variable neighbourhood

decomposition search with bounding for multidimensional knapsack problem. (pp. 2018–

2022). volume 42. doi:10.3182/20090603-3-RU-2001.0502.

Hansen, P., & Mladenović, N. (2003). Variable neighborhood search. In F. Glover,580

& G. Kochenberger (Eds.), Handbook of Metaheuristics (pp. 145–184). Boston, MA:

Springer. doi:10.1007/0-306-48056-5_6.

28



Khemakhem, M., & Chebil, K. (2016). A tree search based combination heuristic for the

knapsack with setup. Computers & Industrial Engineering , 99 , 280–286. doi:https:

//doi.org/10.1016/j.cie.2016.07.021.585

Lahyan, R., Chebil, K., Khemakhem, M., & Coelho, L. (2019). Mathheristics for solving

the multiple knapsack problem with setup. Computers & Industrial Engineering , 129 ,

76–89. doi:https://doi.org/10.1016/j.cie.2019.01.010.

Liu, Q., Cheng, H., Tian, T., Wang, Y., Leng, J., Zhao, R., Zhang, H., & Wei, L. (2021).

Algorithms for the variable-sized bin packing problem with time windows. Computers590

& Industrial Engineering , 155 , 107175. doi:https://doi.org/10.1016/j.cie.2021.

107175.

Merkle, R., & Hellman, M. (1978). Hiding information and signatures in trapdoor knap-

sacks. IEEE Transactions on Information Theory , 24 , 525–530. doi:10.1109/TIT.1978.

1055927.595

Perboli, G., Gobbato, L., & Perfetti, F. (2014). Packing problems in transportation and

supply chain: new problems and trends. Procedia - Social and Behavioral Sciences, 111 ,

672–681. doi:https://doi.org/10.1016/j.sbspro.2014.01.101.

Plata-González, L., Amaya, I., Ortiz-Bayliss, J., Conant-Pablos, S., Terashima-Marín,

H., & Coello Coello, C.-A. (2019). Evolutionary-based tailoring of synthetic in-600

stances for the knapsack problem. Soft Computing , 23 , 12711–12728. doi:10.1007/

s00500-019-03822-w.

Yang, Y. (2006). Knapsack problems with setup. Ph.D. thesis Industrial and Systems

Engineering, Auburn University.

Appendix605

In this section, we report all values related to both upper and lower bounds provided

by the three compared methods. Table 7 shows all results related to the instances of the

first group (ni ∈ [40, 60]), Table 8 displays those related to the second set (ni ∈ [60, 90]),

and Table 9 tallies those related to the third set (ni ∈ [90, 110]).

29



Cplex VND-IP VND-LB Cplex VND-IP VND-LB
Inst. UBCplex zCplex zVND−IP zVND−LB Inst. UBCplex zCplex zVND−IP zVND−LB
I-5-10-1 812939,4 812913 812913 812913 I-15-10-1 2399935,2 2279343 2319142 2319142
I-5-10-2 958561,6 958547 958547 958547 I-15-10-2 2390757,4 2251230 2290209 2290209
I-5-10-3 960159,2 960121 960121 960121 I-15-10-3 2403221,7 2228216 2280258 2280557
I-5-10-4 676489,7 676466 676466 676466 I-15-10-4 2177210,3 2009983 2049983 2050062
I-5-10-5 955249,7 955234 955234 955234 I-15-10-5 2354597,3 2307535 2312884 2312884
I-5-10-6 669293,9 669282 669285 669285 I-15-10-6 2165591,5 † 1999374 2046672 2048590
I-5-10-7 668575,5 668540 668538 668535 I-15-10-7 1862773,3 † 1790297 1807162 1807754
I-5-10-8 612250,1 612232 612235 612235 I-15-10-8 1881900,0 1809485 1817259 1817332
I-5-10-9 685778,4 685764 685764 685764 I-15-10-9 1873553,4 1736682 1774638 1775470
I-5-10-10 600858,5 600834 600841 600841 I-15-10-10 1733807,5 † 1671510 1683655 1684259
I-5-20-1 1002339,5 1001455 1001475 1001475 I-15-20-1 2755181,0 2697518 2706826 2706826
I-5-20-2 628881,2 628864 628864 628864 I-15-20-2 1851136,5 † 1799174 1798826 1799363
I-5-20-3 674386,0 674246 674343 674357 I-15-20-3 2235899,7 2184664 2195401 2195877
I-5-20-4 928901,0 917839 918840 918840 I-15-20-4 2536908,4 2467125 2476018 2476028
I-5-20-5 936002,0 936002 936002 936002 I-15-20-5 2936926,4 2903389 2910999 2910999
I-5-20-6 798017,6 774877 779867 779867 I-15-20-6 2456596,0 2370180 2380982 2380982
I-5-20-7 920253,0 920233 920233 920233 I-15-20-7 2757730,9 2693864 2701151 2701151
I-5-20-8 682780,0 682757 682760 682760 I-15-20-8 1968416,0 1911000 1916093 1916632
I-5-20-9 591197,7 591137 591179 591179 I-15-20-9 1694740,4 1648329 1653975 1654049
I-5-20-10 776071,7 776043 776050 776050 I-15-20-10 2214906,7 † 2125650 2129807 2130731
I-5-30-1 816930,9 816917 816917 816917 I-15-30-1 2722319,7 2687640 2689634 2689997
I-5-30-2 1018124,6 1007880 1009108 1009108 I-15-30-2 2894647,8 † 2855668 2845417 2858963
I-5-30-3 1028641,3 1028614 1028614 1028614 I-15-30-3 2746848,8 2724765 2725778 2725778
I-5-30-4 1106203,3 1094667 1098280 1098280 I-15-30-4 3026950,8 3001183 3006413 3006413
I-5-30-5 832732,6 829696 829685 829696 I-15-30-5 2499499,5 2467329 2475063 2475088
I-5-30-6 1013280,1 1013233 1013233 1013233 I-15-30-6 3183465,4 3147406 3149552 3149552
I-5-30-7 765399,6 753403 760349 760349 I-15-30-7 2672791,2 2634893 2637392 2637392
I-5-30-8 905119,2 905104 905104 905104 I-15-30-8 3065731,9 2987255 3035613 3035613
I-5-30-9 753452,1 753433 753433 753433 I-15-30-9 2778551,5 2694194 2719783 2719783
I-5-30-10 931416,9 924777 924787 924787 I-15-30-10 2761993,5 2726798 2727728 2727728
I-10-10-1 1629716,7 1596969 1603954 1603964 I-20-10-1 2425354,1 2328269 2337831 2337831
I-10-10-2 1782820,3 1749331 1755536 1755536 I-20-10-2 2394577,2 2306563 2331711 2321137
I-10-10-3 1688552,0 1630853 1636663 1636678 I-20-10-3 2454323,0 2363875 2381083 2381083
I-10-10-4 1478382,8 1381215 1401813 1401915 I-20-10-4 2395021,5 2258716 2297629 2297629
I-10-10-5 1914421,3 1889523 1892365 1892365 I-20-10-5 2355104,7 2289114 2297309 2297309
I-10-10-6 1449577,6 1348515 1373297 1373303 I-20-10-6 2358599,2 2259105 2267316 2267316
I-10-10-7 1234418,8 1200768 1211432 1211591 I-20-10-7 2277787,8 2161100 2184523 2184523
I-10-10-8 1264532,2 1172875 1216286 1216369 I-20-10-8 2137761,1 † 2029634 2062592 2066994
I-10-10-9 1289770,2 1235097 1247261 1247416 I-20-10-9 2364510,6 † 2236693 2296965 2300815
I-10-10-10 1220359,8 1092391 1132349 1132414 I-20-10-10 2216506,9 † 2083004 2119150 2121354
I-10-20-1 1896294,3 1864775 1871292 1871292 I-20-20-1 3892568,3 † 3772724 3795371 3811615
I-10-20-2 1351291,4 1287727 1293785 1293791 I-20-20-2 2419631,5 † 2295290 2314756 2317185
I-10-20-3 1496848,1 1477351 1479116 1479116 I-20-20-3 2920812,9 † 2828263 2850146 2852165
I-10-20-4 1690777,4 1682637 1682672 1682672 I-20-20-4 3445949,1 † 3274439 3302637 3302838
I-10-20-5 1974743,0 1974515 1974552 1974552 I-20-20-5 3833888,1 3714273 3730447 3730445
I-10-20-6 1704503,2 1693986 1694830 1694830 I-20-20-6 3339450,7 † 3242898 3264119 3265111
I-10-20-7 1896750,2 1891434 1891514 1891514 I-20-20-7 3657873,6 † 3520490 3525277 3525731
I-10-20-8 1447937,6 1394663 1402275 1402282 I-20-20-8 2496710,4 2380725 2405080 2405269
I-10-20-9 1188892,7 1172195 1175840 1175900 I-20-20-9 2245435,6 † 2125538 2151009 2153260
I-10-20-10 1458957,2 1446957 1449615 1449641 I-20-20-10 2786378,8 † 2681858 2699665 2701313
I-10-30-1 1631703,8 1613457 1613746 1613746 I-20-30-1 3629892,3 3523333 3562054 3562337
I-10-30-2 2048699,2 2031220 2031831 2031831 I-20-30-2 3743516,9 3634824 3659987 3659987
I-10-30-3 1959136,1 1958082 1958088 1958088 I-20-30-3 3728201,3 3607676 3639456 3639457
I-10-30-4 2177876,1 2164724 2165333 2165333 I-20-30-4 3981454,9 3861462 3886415 3886415
I-10-30-5 1695739,4 1663956 1669857 1669857 I-20-30-5 3620672,3 3483875 3519183 3519196
I-10-30-6 2131073,6 2124359 2125488 2125488 I-20-30-6 4127334,0 4032184 4065645 4065645
I-10-30-7 1691681,1 1680246 1681310 1681310 I-20-30-7 3474772,1 3336973 3347683 3347703
I-10-30-8 1985227,9 1960655 1962504 1962504 I-20-30-8 3943031,5 3822736 3861978 3862174
I-10-30-9 1769772,0 1750671 1750834 1750834 I-20-30-9 3809965,8 3696808 3728062 3728089
I-10-30-10 1827647,3 1819140 1822047 1822047 I-20-30-10 3614960,9 3499738 3512312 3512500

Table 7: VND-LB versus VND-IP and Cplex solver on the first set of instances (ni ∈ [40, 60]).

30



Cplex VND-IP VND-LB Cplex VND-IP VND-LB
Inst. UBCplex zCplex zVND−IP zVND−LB Inst. UBCplex zCplex zVND−IP zVND−LB

I-5-10-1 1135995,1 1135990 1135990 1135990 I-15-10-1 3486717,6 † 3212770 3304096 3318511
I-5-10-2 1309362,2 1309351 1309351 1309351 I-15-10-2 3665736,6 3470872 3518744 3518744
I-5-10-3 838496,0 838484 838484 838484 I-15-10-3 2838040,9 2658053 2691244 2691129
I-5-10-4 1338935,1 1338922 1338922 1338922 I-15-10-4 3614004,3 3488463 3502706 3502706
I-5-10-5 1047794,4 1047782 1047782 1047782 I-15-10-5 3593446,7 † 3227304 3292369 3294198
I-5-10-6 1089307,5 1089295 1089295 1089295 I-15-10-6 3223946,8 3047489 3108121 3108018
I-5-10-7 1353689,3 1353672 1353659 1353672 I-15-10-7 3508713,2 3371434 3387869 3387869
I-5-10-8 1153293,9 1153287 1153287 1153287 I-15-10-8 3262349,5 3126731 3159139 3159139
I-5-10-9 869138,2 869128 869128 869128 I-15-10-9 2891922,8 2754402 2784983 2785294
I-5-10-10 1529682,0 1529682 1529682 1529682 I-15-10-10 3671949,1 3572926 3577577 3577600
I-5-20-1 1099777,0 1099777 1099777 1099777 I-15-20-1 3161322,0 2996410 3014696 3015241
I-5-20-2 1323150,2 1323122 1323130 1323130 I-15-20-2 3958086,8 † 3848426 3865508 3865787
I-5-20-3 1329784,0 1329746 1329746 1329746 I-15-20-3 4207958,5 4101826 4137427 4137427
I-5-20-4 1022396,7 996801 997810 997810 I-15-20-4 3008171,1 † 2867360 2903412 2904244
I-5-20-5 1320245,2 1293484 1293496 1293496 I-15-20-5 3861452,7 3759258 3768181 3768188
I-5-20-6 1430399,8 1417408 1422107 1422107 I-15-20-6 3846736,4 3733570 3740469 3740466
I-5-20-7 866475,3 866460 866460 866460 I-15-20-7 3207190,4 3133826 3141879 3142163
I-5-20-8 1585294,4 1575520 1575520 1575520 I-15-20-8 4795781,9 4683390 4721239 4721239
I-5-20-9 1252205,9 1252189 1252189 1252189 I-15-20-9 4034438,5 3943646 3948143 3948296
I-5-20-10 1119969,6 1119956 1119956 1119956 I-15-20-10 3653834,8 3454992 3494340 3494360
I-5-30-1 993038,3 968604 973907 973907 I-15-30-1 3405075,5 † 3272114 3282773 3282893
I-5-30-2 1154947,4 1154930 1154933 1154933 I-15-30-2 3614515,1 3565078 3569378 3569394
I-5-30-3 1179313,5 1179300 1179300 1179300 I-15-30-3 3537341,7 3434248 3448317 3448458
I-5-30-4 1045545,1 1042526 1044345 1044345 I-15-30-4 3578858,8 3461172 3477683 3477753
I-5-30-5 1178737,6 1178724 1178724 1178724 I-15-30-5 3522495,8 3370783 3393784 3393937
I-5-30-6 1284703,2 1284699 1284699 1284699 I-15-30-6 3882023,9 3756185 3763712 3763905
I-5-30-7 1260990,0 1260925 1260925 1260925 I-15-30-7 3481273,3 3319363 3341309 3341309
I-5-30-8 1136260,6 1136247 1136247 1136247 I-15-30-8 3505704,3 3423595 3435875 3435963
I-5-30-9 937821,7 896531 915938 915938 I-15-30-9 2824651,4 † 2711464 2744656 2745631
I-5-30-10 1320349,0 1320349 1320349 1320349 I-15-30-10 3859415,4 3722838 3740622 3740771
I-10-10-1 2243243,4 2204823 2204837 2204837 I-20-10-1 3524142,9 3374186 3380053 3380053
I-10-10-2 2699667,3 2641011 2644369 2644369 I-20-10-2 3669298,3 3521260 3531702 3531702
I-10-10-3 1866691,55 † 1758084 1783114 1783727 I-20-10-3 3618168,8 3372284 3429730 3429796
I-10-10-4 2845871,6 2778427 2778490 2778490 I-20-10-4 3648804,5 3497229 3518703 3518703
I-10-10-5 2342385,2 2291052 2295319 2295319 I-20-10-5 3681807,2 3492697 3532934 3532934
I-10-10-6 2002491,6 1968602 1969663 1969786 I-20-10-6 3550640,3 3372427 3372946 3372946
I-10-10-7 2788961,6 2733547 2740557 2740557 I-20-10-7 3511067,9 3418222 3418334 3418334
I-10-10-8 2465311,7 2434666 2441336 2441336 I-20-10-8 3270509,3 3200694 3202779 3202779
I-10-10-9 1953948,96 † 1896830 1897986 1898453 I-20-10-9 3406038,1 † 3202778 3244499 3245787
I-10-10-10 2963498,7 2912285 2923434 2923434 I-20-10-10 3686118,8 3589405 3608919 3608919
I-10-20-1 2099980,5 2091878 2091981 2091983 I-20-20-1 4203252,1 † 3828935 3887847 3893431
I-10-20-2 2572867,1 2528659 2532270 2532270 I-20-20-2 5369232,4 † 5125476 5128914 5151611
I-10-20-3 2869639,2 2830883 2836991 2836991 I-20-20-3 5273194,8 † 4941808 5044642 5045902
I-10-20-4 1993776,2 1954836 1960748 1960757 I-20-20-4 4256935,3 † 3914397 3949932 3951660
I-10-20-5 2620943,2 2599022 2600713 2600713 I-20-20-5 5306521,4 4968551 5021380 5021505
I-10-20-6 2598780,7 2549692 2551291 2551291 I-20-20-6 5172818,4 † 4985182 5068629 5069767
I-10-20-7 2032942,8 1997195 2000177 2000200 I-20-20-7 4416511,3 † 4114277 4150699 4151816
I-10-20-8 3262145,1 3223238 3228096 3228096 I-20-20-8 6201906,2 6038440 6114417 6114417
I-10-20-9 2647242,5 2615464 2615544 2615544 I-20-20-9 5261506,5 5019634 5053860 5054153
I-10-20-10 2383573,3 2311174 2311189 2311189 I-20-20-10 4814934,4 † 4497229 4527271 4529772
I-10-30-1 2396805,9 2349287 2352883 2352883 I-20-30-1 4643751,3 3718902 4444768 4444996
I-10-30-2 2372374,5 2314128 2327204 2327204 I-20-30-2 4978668,3 4738899 4756582 4756910
I-10-30-3 2297102,9 2257830 2262071 2262071 I-20-30-3 4580819,1 † 4331037 4374171 4376779
I-10-30-4 2222663,2 2172125 2172867 2172867 I-20-30-4 4761669,1 4523887 4602355 4602725
I-10-30-5 2333476,0 2194934 2275439 2275439 I-20-30-5 4776002,5 4499680 4535788 4535917
I-10-30-6 2551577,7 2505779 2513215 2513215 I-20-30-6 5183962,2 5015162 5046797 5047024
I-10-30-7 2318451,4 2272760 2280865 2280866 I-20-30-7 4543007,9 † 4332863 4355036 4357065
I-10-30-8 2298487,4 2278835 2278915 2278915 I-20-30-8 4638483,6 † 4382343 4408044 4408890
I-10-30-9 1908223,4 1906973 1907004 1907004 I-20-30-9 4000858,4 † 3477005 3753223 3755059
I-10-30-10 2523269,4 2486293 2492587 2492587 I-20-30-10 4974329,6 † 4719180 4752095 4758692

Table 8: VND-LB versus VND-IP and Cplex solver on the second set of instances (ni ∈ [60, 90]).

31



Cplex VND-IP VND-LB Cplex VND-IP VND-LB

Inst. UBCplex zCplex zVND−IP zVND−LB Inst. UBCplex zCplex zVND−IP zVND−LB

I-5-10-1 1867460,7 1867448 1867448 1867448 I-15-10-1 4663462,6 4364645 4435579 4435579

I-5-10-2 1674734,6 1674727 1674727 1674727 I-15-10-2 4658581,3 4328719 4422996 4422996

I-5-10-3 1759796,2 1759784 1759784 1759784 I-15-10-3 4826291,4 4614863 4628569 4628583

I-5-10-4 1515981,2 1515973 1515973 1515973 I-15-10-4 4703016,1 † 4299610 4411006 4418089

I-5-10-5 1731002,4 1730990 1730990 1730990 I-15-10-5 4807290,3 † 4531473 4562612 4581083

I-5-10-6 1412958,7 1408890 1408929 1408929 I-15-10-6 4612355,4 † 4248478 4321129 4345145

I-5-10-7 1692394,5 1692386 1692386 1692386 I-15-10-7 4427701,9 † 4109056 4125871 4167176

I-5-10-8 1528505,7 1528500 1528500 1528500 I-15-10-8 4556780,9 † 4325640 4369817 4372684

I-5-10-9 1530623,6 1530612 1530612 1530612 I-15-10-9 4460509,9 † 4155855 4197352 4211577

I-5-10-10 1540679,5 1540670 1540670 1540670 I-15-10-10 4324370,4 4055080 4085959 4084830

I-5-20-1 1604652,1 1604648 1604648 1604648 I-15-20-1 5383483,3 5192174 5221403 5221526

I-5-20-2 1737952,8 1737941 1737941 1737941 I-15-20-2 5234171,4 5086268 5114107 5114149

I-5-20-3 1657767,0 1657099 1657101 1657101 I-15-20-3 4733824,0 4463771 4477901 4477896

I-5-20-4 1551060,4 † 1550979 1551052 1551052 I-15-20-4 4618848,3 4394499 4411756 4411860

I-5-20-5 1378609,2 1378600 1378600 1378600 I-15-20-5 4757735,2 4484010 4490047 4490056

I-5-20-6 1657277,8 1657270 1657270 1657270 I-15-20-6 5374620,4 † 5120790 5140943 5141160

I-5-20-7 2142847,0 2142847 2142847 2142847 I-15-20-7 5528202,0 5340987 5352137 5352154

I-5-20-8 1389068,6 1388771 1388781 1388781 I-15-20-8 4602491,5 4350319 4358015 4358015

I-5-20-9 1385268,7 1385258 1385258 1385258 I-15-20-9 4502564,7 † 4227636 4244785 4245631

I-5-20-10 1656638,7 1656634 1656634 1656634 I-15-20-10 5182641,8 4947314 4971909 4972189

I-5-30-1 1537911,4 1530380 1531024 1531024 I-15-30-1 4772407,5 4602055 4612962 4612962

I-5-30-2 1516879,4 1499879 1499985 1499985 I-15-30-2 4473156,9 2779338 4231845 4231939

I-5-30-3 1543845,9 1527414 1527417 1527417 I-15-30-3 4958481,7 4178076 4811305 4811308

I-5-30-4 1721643,8 1711958 1712120 1712120 I-15-30-4 5509799,1 5335096 5350587 5350778

I-5-30-5 1703913,5 1703226 1703232 1703232 I-15-30-5 5125347,8 4973120 4985615 4985641

I-5-30-6 1622188,5 1621296 1621348 1621348 I-15-30-6 5704290,5 5537299 5551034 5551212

I-5-30-7 1960411,7 1949880 1950132 1950132 I-15-30-7 5239904,0 5037565 5050284 5050439

I-5-30-8 1956219,8 1956204 1956204 1956204 I-15-30-8 5201317,7 5017786 5026460 5026456

I-5-30-9 1846949,6 1846939 1846940 1846940 I-15-30-9 6245031,9 6153111 6165733 6165873

I-5-30-10 1689941,6 1689932 1689932 1689932 I-15-30-10 5221794,4 5084368 5109194 5109331

I-10-10-1 3298297,2 3230070 3230187 3230185 I-20-10-1 4671113,6 4432546 4456197 4452034

I-10-10-2 3183666,6 3089879 3106717 3106746 I-20-10-2 4847811,0 4619609 4628011 4628011

I-10-10-3 3645863,7 3544868 3545610 3545610 I-20-10-3 4837582,5 4592648 4628083 4628083

I-10-10-4 3046928,0 2991357 2994730 2994867 I-20-10-4 4741308,6 4530169 4571407 4555970

I-10-10-5 3464918,4 3336948 3347290 3347290 I-20-10-5 4813860,0 4579438 4598196 4598196

I-10-10-6 3024398,3 2923356 2928397 2928397 I-20-10-6 4806111,7 4563157 4572502 4572502

I-10-10-7 2987072,8 2847341 2850447 2850559 I-20-10-7 4655998,7 4389542 4421131 4421131

I-10-10-8 3276957,3 3068803 3138789 3138855 I-20-10-8 4612266,3 4379102 4421462 4421462

I-10-10-9 3023569,3 2905866 2912622 2912659 I-20-10-9 4797332,4 4532740 4554606 4554606

I-10-10-10 2926027,2 2835965 2836184 2836256 I-20-10-10 4787175,8 4506752 4538080 4538080

I-10-20-1 3422171,5 3316159 3325963 3325985 I-20-20-1 6882124,0 6524573 6607329 6607411

I-10-20-2 3221796,6 3206335 3206388 3206388 I-20-20-2 6851117,2 6515193 6540068 6540264

I-10-20-3 3099616,4 3045058 3047775 3047778 I-20-20-3 6364792,9 5952616 5990005 5990292

I-10-20-4 3052492,9 3012783 3013678 3013678 I-20-20-4 6425687,1 6026242 6060176 6060526

I-10-20-5 2885152,8 2730742 2738251 2738270 I-20-20-5 6411272,6 † 5998329 6012405 6015920

I-10-20-6 3390359,6 3168667 3225259 3225259 I-20-20-6 7429146,2 7092992 7127351 7127701

I-10-20-7 3689449,0 3617475 3618654 3618654 I-20-20-7 7251142,2 6899617 6967739 6968086

I-10-20-8 3061293,5 2980099 2980334 2980356 I-20-20-8 6199404,5 † 5790296 5816364 5820618

I-10-20-9 2875364,0 2806390 2818858 2818857 I-20-20-9 5892109,9 † 5438442 5500260 5502121

I-10-20-10 3406033,2 3333175 3335679 3335679 I-20-20-10 7015431,3 † 6661135 6692544 6693514

I-10-30-1 3197373,9 3104169 3117735 3109134 I-20-30-1 6513834,6 6164119 6198551 6198763

I-10-30-2 3072936,3 2975502 2981670 2981680 I-20-30-2 6336829,2 † 3717381 5968860 5971906

I-10-30-3 3319986,9 3211083 3214072 3214072 I-20-30-3 6726885,1 † 6401531 6425674 6447190

I-10-30-4 3449863,4 3399368 3399720 3399720 I-20-30-4 7506803,1 7233264 7282004 7282190

I-10-30-5 3304489,7 2797469 3147562 3147571 I-20-30-5 6765025,2 6476298 6499874 6500088

I-10-30-6 3679052,2 3655217 3659671 3659671 I-20-30-6 7514031,2 7270337 7283296 7283550

I-10-30-7 3442890,2 3388084 3395345 3395384 I-20-30-7 6748013,6 6425692 6466879 6467157

I-10-30-8 3579817,7 3509392 3512831 3512831 I-20-30-8 6948207,9 6644286 6687620 6687875

I-10-30-9 4049564,3 3703620 4001165 4001166 I-20-30-9 8026206,7 7820264 7850004 7850004

I-10-30-10 3579159,6 3509762 3512050 3512150 I-20-30-10 6897936,5 6576763 6601791 6601792

Table 9: VND-LB versus VND-IP and Cplex solver on the third set of instances (ni ∈ [90, 110]).

32




