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In our previous works we have shown that the elastic properties of the intercalated SmAb phase 

formed by bent-shaped dimers are governed by the nematic-like behaviour of the secondary 

director m that is associated with the projection of the molecular axes of the monomers on the 

plane of the smectic layer. From the experiment, the corresponding three Frank-like moduli 𝐾𝐾11
𝑚𝑚, 

𝐾𝐾22
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚 related to the secondary director demonstrate the usual behaviour of the Frank 

moduli of the nematics formed by rod-like molecules: monotonously increase with decreasing 

temperature. This is contrary to the temperature dependence of the elastic moduli for the primary 

director of N and NTB phases formed by bent-shaped dimers (for which the bend elastic constant 

decreases with temperature to zero). However, the values of  the Frank-like moduli for SmAb 

were found to be smaller than their nematic-phase equivalents,  and demonstrate a strong and 

unusual anisotropy, with 𝐾𝐾11
𝑚𝑚 : 𝐾𝐾22

𝑚𝑚 : 𝐾𝐾33
𝑚𝑚 ratio being approximately 30 : 1 : 10.  Here we present  

a theoretical model  based on the assumption of the nematic-like order within the smectic layers 

that provides a qualitative explanation of the experimental results. 
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I. INTRODUCTION 

The most commonly used liquid crystals (LCs) are uniaxial anisotropic fluids formed by 

rod-like molecules oriented with their longest molecular axes along an average direction called 

the director, which is a unit vector n defining the D∞ symmetry axis of the LC phase. Fluids that 

have only orientational order but no positional order are called nematics. A distortion of the 

director field in nematics requires an elastic energy given by [1]: 

𝑓𝑓𝑛𝑛 = 1
2

�𝐾𝐾11�𝐧𝐧(𝛁𝛁 ∙ 𝐧𝐧)�
2

+ 𝐾𝐾22�𝐧𝐧 ∙ (𝛁𝛁 × 𝐧𝐧)�
2

+ 𝐾𝐾33�𝐧𝐧 × (𝛁𝛁 × 𝐧𝐧)�
2

�, (1) 

where the vectors  𝐧𝐧(𝛁𝛁 ∙ 𝐧𝐧)  and  𝐧𝐧 × (𝛁𝛁 × 𝐧𝐧)  and the pseudo-scalar  𝐧𝐧 ∙ (𝛁𝛁 × 𝐧𝐧) describe the 

splay, bend, and twist distortions of the director n, respectively, and K11, K33, and K22 are the 

respective elastic moduli.  

In an external electric field, the free energy of the LC per unit volume becomes: 

𝑓𝑓𝑛𝑛 = 1
2

�𝐾𝐾11�𝐧𝐧(𝛁𝛁 ∙ 𝐧𝐧)�
2

+ 𝐾𝐾22�𝐧𝐧 ∙ (𝛁𝛁 × 𝐧𝐧)�
2

+ 𝐾𝐾33�𝐧𝐧 × (𝛁𝛁 × 𝐧𝐧)�
2

+ 𝑫𝑫 ∙ 𝑬𝑬�,  (2) 

where E is the external electric field and D is the electric displacement. When a voltage is 

applied across a uniformly aligned nematic layer, the director field is distorted and the new 

director configuration results from a balance of elastic and electric torques, the latter arising from 

the anisotropy of the dielectric permittivity of nematics. This effect, known as the electric 

Fréedericksz transition (FrTr) [2,3], is used to control the optical properties of the LC sample by 

an electric field thanks to the optical anisotropy of LCs, a phenomenon exploited for applications 

in modern displays.  

 In addition to long-range orientational order, smectic (Sm) phases, unlike nematics, have 

long-range positional order, with LC molecules arranged in equidistant layers. The simplest of 

these phases, the smectic A (SmA), is formed by rod-shaped molecules parallel to the normal to 

the layers. Molecular compounds with more complicated shape, such as bent-shaped dimers, can 

also form SmA-like phases. However, in this case, their shape imposes additional constraints on 

the structure of the layers, leading to unusual physical properties of the phase. For example, in 

previous work [4], we reported a new electro-optic effect in a biaxial smectic A phase (SmAb) 

formed by bent-shaped dimers that is similar to the FrTr in nematics. In references [4, 5] we 

have described the structural, dielectric, optical, and elastic properties of one such system, 

hereafter referred to as BP12, which is a mixture of a bent-shaped dimer, 1,7-Bis(6-(4-
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hexyloxybenzoyloxy)naphthalene-2-yl)heptane (referred to as BNA-76) with the rod-like 

nematogen 4′-cyano[1,1′-biphenyl]-4-yl 4-hexylbenzoate (6-PEPP-N). The phase transition 

temperatures of the mixture measured by DSC are: Iso – 162 °C - N - 109 °C - NTB - 102 °C - 

SmAb - ~ 70 °C - Cr. (Note that the NTB and the SmAb phase coexist in a wide temperature 

range, from 102 to 97 °C.) The elastic properties of the SmAb phase are the main topic of this 

article. 

 

 

𝑝𝑝+ =
𝐿𝐿
2 

𝑝𝑝− =
𝐿𝐿
2

 

n 

m k 

L = 46Å 

q 

Q 

Fig. 1. Schematic representation of the intercalated SmAb phase. Each dimer spans two 
adjacent smectic layers, with the tilt angle of the monomer alternating from layer to layer. 
The orientational order tensor, Q, of the dimers (shown in grey) is biaxial. The primary 
director, n, is oriented along the long axis of the dimer and is perpendicular to the smectic 
layers. The secondary director, m, is perpendicular to n and lies in the plane of the dimer. 
The third director, k, is perpendicular to both n and m. The inset shows the molecular 
structure [4] and a schematic representation of the dimer. The vector q is a unit vector 
perpendicular to the smectic layers. 
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The SmAb phase, whose structure is shown in Figure 1, retains all the properties of the 

ordinary SmA phase. The expression of its elastic energy has, in addition to the terms associated 

with the distortions of the primary director n given by Eq. (1), terms related to the compression 

and/or dilation of the smectic 

layers and to the tilt of 𝐧𝐧 away 

from the normal to the layers, 

q. The elastic energy 

corresponding to these specific 

smectic terms is much higher 

than those related to the 

distortions of 𝐧𝐧. Moreover, due 

to the incompatibility of the 

bend and twist distortions of 𝐧𝐧 

with the layered structure, 

these modes cannot be 

observed, and therefore only a 

splay distortion can take place. 

Consequently, the ordinary 

Fréedericksz transition is 

forbidden because of the 

prohibitively high energy cost 

of tilting the primary director  

𝐧𝐧 away from q. 

However, the plank-like shape of the dimer [6, 7, 8] gives the system additional degrees of 

freedom. Rotation of the dimers about their long axis relative to each other requires little energy, 

allowing for nematic-like distortions of the secondary director, m (see Figure). 

Since 𝐦𝐦 and 𝐧𝐧 are decoupled, the elastic distortion energy of a planar SmAb sample can be 

written in a form mathematically identical to that of the regular uniaxial nematic: 

 𝑓𝑓𝑚𝑚 = 1/2 {𝐾𝐾11
𝑚𝑚 [𝐦𝐦(𝛁𝛁 ∙ 𝐦𝐦)]𝟐𝟐 + 𝐾𝐾22

𝑚𝑚  [𝐦𝐦 ∙ (𝛁𝛁 × 𝐦𝐦)]2 + 𝐾𝐾33
𝑚𝑚  [𝐦𝐦 × (𝛁𝛁 × 𝐦𝐦)]2} .             (3) 

Fig. 2. Schematic representation of the main distortion 
modes of the secondary director m (shown as double-
headed arrow) in the SmAb phase The splay and bend 
distortions are shown within a single layer, the twist 
distortion spans three adjacent layers. The relative angle 
between the dimers is greatly exaggerated for clarity. 

SPLAY 

𝑆𝑆𝑚𝑚 = 𝐦𝐦(𝛁𝛁 ∙ 𝐦𝐦) 

TWIST 

𝑇𝑇𝑚𝑚 = 𝐦𝐦 ∙ (𝛁𝛁 × 𝐦𝐦) 

BEND 

𝐵𝐵𝑚𝑚 = 𝐦𝐦 × (𝛁𝛁 × 𝐦𝐦) 
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Here 𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚, for i = 1, 2, 3, are the elastic moduli for splay, twist, and bend distortions of 𝐦𝐦, 

respectively [4].  

In our previous work [5], we measured the temperature dependence of all three  𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚 for the 

BP12 mixture using a variety of dielectric, electro-optical, and optical methods. The results 

(reproduced from Ref. 5 in Fig. 3) were quite surprising: the temperature dependence of 𝐾𝐾11
𝑚𝑚 and 

𝐾𝐾33
𝑚𝑚 in the SmAb phase is qualitatively similar to that of a regular rod-like nematic, as both 

constants decrease with increasing temperature and, although slightly smaller, are still of the 

same order of magnitude as those of 5CB [9]. A striking difference between the usual nematic 

and the SmAb is that, for the latter, 𝐾𝐾11
𝑚𝑚  is about 3 times larger than 𝐾𝐾33

𝑚𝑚, whereas, for the former, 

𝐾𝐾33
𝑛𝑛  is similar or slightly larger than 𝐾𝐾11

𝑛𝑛  . The property 𝐾𝐾33/𝐾𝐾11 << 1 is common for bent-

shaped dimers when approaching the phase 

transition to the twist-bend nematic (NTB) phase. 

In this case, 𝐾𝐾33 even decreases to almost zero on 

cooling [10]. As for rod-like nematics, the elastic 

constant  𝐾𝐾33
𝑚𝑚 of the SmAb increases with 

decreasing temperature (Fig. 3). Note, however, 

that in the SmAb phase, 𝐾𝐾11
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚 are 

associated with the rotation of the molecules 

about their long molecular axis, which is less 

energetically costly than the rotation about the 

short molecular axis involved in rod-like 

nematics.  

Another surprising difference between the SmAb and usual nematics is that  𝐾𝐾22
𝑚𝑚 is ten times 

smaller than 𝐾𝐾33
𝑚𝑚 and about 30 times smaller than 𝐾𝐾11

𝑚𝑚. It is also almost an order of magnitude 

smaller than 𝐾𝐾22 of the typical 5CB nematic [9].  Qualitatively, this behaviour can be explained 

by the anticlinic alignment of the monomers in adjacent smectic layers of the intercalated SmAb 

phase, which makes the inter-layer nematic-like contribution to 𝐾𝐾22
𝑚𝑚 negligible. The residual 

twist elasticity in the intercalated SmAb phase should then be attributed to the twist elasticity of 

the central spacer of the BNA-76 dimers and/or to the decrease of the in-layer order parameter of 

the monomers within the smectic layer due to the coexistence of two populations of monomers 

with slightly different orientations of m. In this article, we present a theoretical model describing 

Fig. 3. Temperature dependence of the 
elastic moduli for the distortions of the 
𝐦𝐦-director in the intercalated SmAb 
phase of BP12.  
 

NoOne
Maybe we need a permissionTo see with Patrick
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the mechanism of twist elasticity in the intercalated SmAb phase. The model explains the 

unusual behaviour of the 𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚 elastic moduli of the SmAb phase and relates it to the in-plane 

order of the mesogenic monomers. 

II.  IN-PLANE ORIENTATIONAL 

ORDER OF THE MONOMERS 

As mentioned above, the long axis of 

each dimer is perpendicular to the smectic 

layers (Fig. 1). Moreover, each dimer 

spans over two adjacent layers, which 

makes the layers intercalated. In a 

uniformly oriented SmAb sample, the 

planes of the dimers are on average 

oriented in the same direction as the 

secondary director m. Let’s introduce a 

local Cartesian system of coordinates (1, 

2, 3) associated with a dimer (Fig.  4). In 

this system, the monomers belonging to 

the same dimer are in the 𝟐𝟐𝟐𝟐�  plane, with 

primary director n parallel to the 3-axis. 

The plane of the smectic layer is parallel 

to the  𝟏𝟏𝟐𝟐�  plane. Within a single smectic 

layer, the long axes of the monomers are 

all oriented in the same direction, given 

by the vector 𝛄𝛄 (director of the layer), 

which makes an angle ψ with the 3-axis 

and therefore with n. All three vectors n, m, and 𝛄𝛄 are coplanar. In Fig. 4, the x-axis is a 

reference axis parallel to the plane of the layer. The orientation of m varies within the smectic 

layer and we call ϕ the angle between m and the x-axis.   

𝐧𝐧 

𝐦𝐦 

3 

 2 

 
𝜓𝜓 

 x 
ϕ 

𝛄𝛄 

 
𝜓𝜓 

 1 

 
𝜓𝜓 

𝛄𝛄 𝐧𝐧 

ϕ=ϕ(x) 
 x 

𝐦𝐦  y 

Fig. 4. Coordinate system of the dimers.        
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Within each smectic layer of the SmAb, the rod-like monomers tend to align parallel to each 

other, leading to nematic-like order. Therefore, each individual monomer is oriented in the 

Maier-Saupe mean-field potential of its neighbors [11]:  

𝑈𝑈1(𝛽𝛽) = 𝑢𝑢2
𝑘𝑘𝑘𝑘

〈𝑃𝑃2〉𝑃𝑃2(cos 𝛽𝛽),     (4) 

where 𝛽𝛽 is the angle between the long axis of the monomer and the director 𝛄𝛄, 〈𝑃𝑃2〉 =

〈𝑃𝑃2(cos 𝛽𝛽)〉 is the nematic order parameter, and 𝑢𝑢2 is the amplitude of the two-particle potential. 

Moreover, the contribution of the alkyl spacer to the mean-field potential is negligible due to its 

low anisotropy of polarizability. Thus, the orienting potential acting on each dimer is just twice 

that acting on each monomer of the dimer.  

 Here, we consider the monomer layer as a thin slab of nematic formed by free (non-

dimerized) monomer moieties with director 𝛄𝛄 tilted at an angle 𝜓𝜓 with respect to the normal to 

the layers. In general, the order parameter of the monomer slab, Ssl, should be smaller than that 

of the bulk nematic, Sb, because the two-particle potential is only integrated over a single layer 

instead of the whole bulk sample. In the case of anticlinic alignment, the contribution to 𝑢𝑢2 due 

to the interaction of two adjacent layers can be neglected because of their opposite signs of the 

tilt angle. In fact, the average angle between the monomers belonging to two adjacent layers, 2ψ, 

is about 60°, which is close to the “magic angle” µ at which 𝑃𝑃2 (cos 𝜇𝜇) = 0. 

 As can be seen on Fig. 2, any distortion of m leads to in-layer or layer-to-layer rotation 

of m and 𝛄𝛄. In an aligned sample, with the lowest energy of the ground state, m is uniform, and 

its in-plane orientation is arbitrary. In this case, 𝛄𝛄 is in the  𝐧𝐧, 𝐦𝐦� plane, and the sign of its tilt 

alternates from layer to layer. When m rotates by an angle ϕ, all its three main distortion modes 

are involved (Fig.  2), and 𝛄𝛄 rotates on a cone of aperture 𝜓𝜓. The contribution of each distortion 

mode to the elastic energy is determined by their respective constants 𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚.  However, according 

to the nematic-like alignment of the monomers within each layer, this distortion can also be 

described as the nematic-like distortion of 𝛄𝛄, which is characterized by the Frank elastic moduli, 

𝜅𝜅𝑖𝑖𝑖𝑖, of the nematic phase formed by the monomers within the slab. Therefore, the moduli 𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚 

can be expressed as functions of 𝜅𝜅𝑖𝑖𝑖𝑖, which is the general strategy that we use in the following 

sections. 
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III. SPLAY AND BEND ELASTIC MODULI  

To compute 𝐾𝐾11
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚, the splay and bend elastic constants of the secondary director m, it 

is sufficient to consider the case where the orientation of m varies only with respect to the 

arbitrary reference axis x. These two principal distortions, shown in Fig. 2, can be described as a 

rotation of m in the layer plane along the x-axis.  In the coordinate system (x, y, 3), m has 

components (cos 𝜑𝜑, sin 𝜑𝜑, 0), and the distortion energy density of the SmAb in terms of 𝜑𝜑 =

𝜑𝜑(𝑥𝑥) is: 

𝑓𝑓𝑚𝑚 = 1
2

{𝐾𝐾11
𝑚𝑚 [𝐦𝐦(𝛁𝛁 ∙ 𝐦𝐦)]𝟐𝟐 + 𝐾𝐾33

𝑚𝑚  [𝐦𝐦 × (𝛁𝛁 × 𝐦𝐦)]2} = 1
2

{𝐾𝐾11
𝑚𝑚 sin2 𝜑𝜑 + 𝐾𝐾33

𝑚𝑚 cos2 𝜑𝜑} �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
2
. (5) 

In this system, 𝛄𝛄 has components (sin 𝜓𝜓 cos 𝜑𝜑, sin 𝜓𝜓 sin 𝜑𝜑, cos 𝜓𝜓) and the sign of ψ alternates 

from layer to layer. The energy density in terms of the director 𝛄𝛄 of the nematic slab is: 

𝑓𝑓𝛾𝛾 = 1
2

{𝜅𝜅11 [𝛄𝛄(𝛁𝛁 ∙ 𝛄𝛄)]𝟐𝟐 + 𝜅𝜅22 [𝛄𝛄 ∙ (𝛁𝛁 × 𝛄𝛄)]2 + 𝜅𝜅33 [𝛄𝛄 × (𝛁𝛁 × 𝛄𝛄)]2} = 1
2

{𝜅𝜅11 sin2 𝜓𝜓 sin2 𝜑𝜑 +

(𝜅𝜅22 cos2 𝜓𝜓 + 𝜅𝜅33 sin2 𝜓𝜓) sin2 𝜓𝜓 cos2 𝜑𝜑} �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
2
  .                (6)    

As expected, 𝑓𝑓𝛾𝛾 is independent of the sign of ψ. Finally, the comparison of 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝛾𝛾 gives the 

nematic-like elastic moduli 𝐾𝐾11
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚 as functions of the Frank moduli, 𝜅𝜅𝑖𝑖𝑖𝑖, of the equivalent 

nematic slab: 

𝐾𝐾11
𝑚𝑚 =  𝜅𝜅11 sin2 𝜓𝜓       (7) 

𝐾𝐾33
𝑚𝑚 = 𝜅𝜅22 sin2 𝜓𝜓 cos2 𝜓𝜓 + 𝜅𝜅33 sin4 𝜓𝜓.     (8) 
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IV. TWIST ELASTIC CONSTANT 

The geometry of a twist 

distortion of the secondary director, m, 

is more complicated than for splay and 

bend, because, although m is aligned 

uniformly within each layer, it rotates by 

a small angle ∆ϕ from one layer to the 

next, forming a helix with axis t 

perpendicular to the layers (Fig. 5). The 

helical pitch is 𝑝𝑝𝐦𝐦 = 2𝜋𝜋
∆𝑑𝑑

𝑑𝑑, where 𝑑𝑑 is 

the thickness of the layer of monomers. 

The 𝛄𝛄 director, in the even /odd layers, 

rotates on a cone with aperture 𝜓𝜓 with 

an angular step of  ∆𝜑𝜑. However, due to 

the anticlinic organisation of the layers, 

the layer to layer angular step is 𝜋𝜋 − ∆𝜑𝜑, and corresponding heliconical pitch is 𝑝𝑝𝛄𝛄 = 2𝜋𝜋
𝜋𝜋−∆𝑑𝑑

𝑑𝑑.  

There are three possible contributions for the twist distortion of m in an intercalated 

SmAb phase. The first results from the twisted nematic-like direct layer to layer interaction. The 

second is due to the torsional deformation of the alkyl spacer linking two monomers. Such 

deformation does not alter the relatively high order parameter of the 𝛄𝛄 director within the 

nematic slab. The third is due to the rotation of the dimer as a whole with respect to other 

dimers. Unlike usual rod-like molecules, the dimers are plank-shaped, and therefore any rotation 

of such a plank will disturb the nematic order within the slab and reduce the order parameter of 

𝛄𝛄.  

In the following paragraphs we will analyse the relevance of the three mechanisms 

mentioned above and their contributions to 𝐾𝐾22
𝑚𝑚. 

 

 

𝜓𝜓 

i-1 

∆𝜑𝜑 
𝐦𝐦𝑖𝑖−1 

𝛄𝛄𝑖𝑖+1 

i 
𝜓𝜓 

𝐦𝐦𝑖𝑖  

𝛄𝛄𝑖𝑖  

𝜓𝜓 

∆𝜑𝜑 
𝐦𝐦𝑖𝑖+1 i+1 

𝛄𝛄𝑖𝑖−1 

t, n 

∆𝜑𝜑 
∆𝜑𝜑 

𝛄𝛄𝑖𝑖  
𝛄𝛄𝑖𝑖+1 

𝛄𝛄𝑖𝑖−1 

𝜓𝜓 

𝐦𝐦𝑖𝑖−1 

𝐦𝐦𝑖𝑖+1 
𝐦𝐦𝑖𝑖  

t, n 

Fig. 5. Geometry of twist deformation of 
secondary director m. Three consecutive 
smectic layers are shown.  
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IV.1 CONTRIBUTION OF THE DIRECT INTERACTION BETWEEN ADJACENT 

MONOMER LAYERS TO 𝐾𝐾22
𝑚𝑚. 

 The nematic order within the layer i favors the orientation of its director 𝛄𝛄𝑖𝑖 parallel to 

those, 𝛄𝛄𝑖𝑖±1, of the adjacent layers. The nematic-like energy of interaction between layers i and 

i±1 is proportional to −𝑃𝑃2(𝛄𝛄𝑖𝑖 ∙ 𝛄𝛄𝑖𝑖±1) [11]. This inter-layer contribution differs greatly between 

the anticlinic (as in the SmAb) and synclinic (as in the chiral smectic C, SmC*) organisations of 

the tilt in adjacent layers. Indeed, as can be seen in Fig. 6a, in a synclinic smectic with tilt ψ and 

twist Δ𝜑𝜑 per layer: 

𝛄𝛄𝑖𝑖 = (0, sin 𝜓𝜓, cos 𝜓𝜓) 

𝛄𝛄𝑖𝑖+1 = (sin 𝜓𝜓 sin Δ𝜑𝜑 ,  sin 𝜓𝜓 cos Δ𝜑𝜑 , cos 𝜓𝜓) 

in the indicated system of coordinates. Thus,  

 −𝑃𝑃2(𝛄𝛄𝑖𝑖 ∙ 𝛄𝛄𝑖𝑖±1) = − 3
2

( sin2 𝜓𝜓 cos Δ𝜑𝜑 + cos2 𝜓𝜓)2 + 1
2

≈ −1 + 3
2

sin2 𝜓𝜓(∆𝜑𝜑)2     (9) 

assuming small ∆𝜑𝜑  and neglecting terms of higher order in ∆𝜑𝜑. The first term here, independent 

of the twist, is the inter-layer contribution to the self -energy of the phase. It is negative because 

the directors of the two layers are parallel in 

the absence of twist. The second term, 

quadratic in the twist angle per layer, is the 

inter-layer contribution to the distortion 

energy. It is proportional to sin2 𝜓𝜓(Δ𝜑𝜑)2 and 

positive because, in the twisted case, the two 

directors of the adjacent layers are no longer 

parallel. The contribution of this term to 𝐾𝐾22
𝑚𝑚 

will be of the order of 𝜅𝜅22 sin2 𝜓𝜓, assuming 

that 𝜅𝜅22 = 𝜅𝜅33 for the monomer nematic.  

In an anticlinic chiral smectic with tilt ψ 

and twist 𝜋𝜋 − Δ𝜑𝜑 per layer (Fig. 6b): 

𝛄𝛄𝑖𝑖 = (0, sin 𝜓𝜓, cos 𝜓𝜓) 

𝜋𝜋 − ∆𝜑𝜑 

𝛄𝛄𝑖𝑖+1 

𝛄𝛄𝑖𝑖  

𝜓𝜓 

𝐦𝐦𝑖𝑖  

z 

x y 

a b 

∆φ 

𝛄𝛄𝑖𝑖+1 𝛄𝛄𝑖𝑖  

𝜓𝜓 

𝐦𝐦𝑖𝑖  
𝐦𝐦𝑖𝑖+1 

z 

𝐦𝐦𝑖𝑖+1 

x y 

Fig. 6. Schematic representation of the twist 
in a layered synclinic (a) system with tilt ψ 
and twist Δ𝜑𝜑 per layer and an anticlinic (b) 
system with the same tilt ψ and twist 𝜋𝜋 −
Δ𝜑𝜑 per layer. 
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𝛄𝛄𝑖𝑖+1 = (sin 𝜓𝜓 sin(π − Δ𝜑𝜑) , sin 𝜓𝜓 cos(π − Δ𝜑𝜑) , cos 𝜓𝜓) =

(sin 𝜓𝜓, sin ∆𝜑𝜑 , −sin 𝜓𝜓 cos ∆𝜑𝜑 , cos 𝜓𝜓). 

Thus, using the same approximations as in the synclinic case, we obtain: 

(𝛄𝛄𝑖𝑖 ∙ 𝛄𝛄𝑖𝑖±1)2 = (0 −  sin2 𝜓𝜓 cos Δ𝜑𝜑 + cos2 𝜓𝜓)2 = (cos2 𝜓𝜓 −  sin2 𝜓𝜓 cos Δ𝜑𝜑 − sin2 𝜓𝜓 +

sin2 𝜓𝜓)2 = �cos2 𝜓𝜓 −  sin2 𝜓𝜓 + sin2 𝜓𝜓 (1 − cos Δ𝜑𝜑)�
2

= �cos 2 𝜓𝜓 + sin2 𝜓𝜓 (1 − cos Δ𝜑𝜑)�
2

≈

�cos 2 𝜓𝜓 + 1
2

sin2 𝜓𝜓 (∆𝜑𝜑)2�
2

≈ cos2 2 𝜓𝜓 + cos 2 𝜓𝜓 sin2 𝜓𝜓 (∆𝜑𝜑)2    (10) 

The inter-layer contribution to the energy becomes: 

−𝑃𝑃2(𝛄𝛄𝑖𝑖 ∙ 𝛄𝛄𝑖𝑖±1) ≈ −𝑃𝑃2(cos 2 𝜓𝜓) − 3
2

cos 2 𝜓𝜓 sin2 𝜓𝜓(∆𝜑𝜑)2.  

The first term, which is twist-independent, again represents the self-energy of the nematic-like 

order of the phase. Note that, in the anticlinic case, its absolute value decreases with increasing 

tilt angle and even changes sign when cos 2 𝜓𝜓 > 1/3 (i.e. at the magic angle). Here, 𝜓𝜓 ≈ 30° and 

𝑃𝑃2(cos 2 𝜓𝜓) is small and negative, so that the inter-layer contribution to the self-energy can be 

neglected (see above).  

The second term, which is proportional to (∆𝜑𝜑)2 and represents the contribution of the twist 

distortion energy to 𝐾𝐾22
𝑚𝑚, also depends on 𝜓𝜓 and changes sign at 𝜓𝜓 = 45°.  As in our case 𝜓𝜓 < 

45°, this contribution to the energy is negative, i.e. a twisted sample has a slightly lower energy 

than an untwisted one. This unusual behaviour is easy to understand geometrically from Fig. 6b: 

for  ∆𝜑𝜑 ≠ 0, the angle between the directors of the two adjacent layers decreases, leading to a 

decrease in the interaction energy. Therefore, the contribution of this term to 𝐾𝐾22
𝑚𝑚 will be of the 

order of −𝜅𝜅22 cos 2 𝜓𝜓 sin2 𝜓𝜓, assuming again that 𝜅𝜅22 = 𝜅𝜅33 for the monomer nematic. Then, 

we will neglect this small negative contribution and will focus on other, less direct, contributions 

to the twist energy of the SmAb, which are related to its structure made of intercalated dimers. 

 

 

 

 



12 
 

 

IV.2 ESTIMATE OF THE CONTRIBUTION OF TWIST DEFORMATION OF THE ALKYL 

SPACER TO 𝐾𝐾22
𝑚𝑚. 

We again consider a periodic structure formed by layers (slabs) with nematic order of the 

monomers. The slabs are intercalated because each dimer spans two adjacent layers. To create a 

helical structure only by twisting the alkyl spacer, 

two monomers of the same dimer belonging to 

two adjacent layers should form an azimuthal 

angle, Δ𝜑𝜑 Then, if the spacer between the 

monomers is flexible, the average twist angle per 

single CH2-CH2 bond in the spacer is given by  

𝛼𝛼 = ∆𝑑𝑑
𝑁𝑁

  , where N is the number of bonds in the 

spacer (Fig. 7). In this case, only the twist of the 

chain contributes to the twist distortion of the 

liquid crystal.   

The energy needed for twisting a single 

bond in the spacer by a small angle 𝛼𝛼 is 

approximately given by [12]: 

 𝐸𝐸(𝛼𝛼) ≈ ∆𝐸𝐸 sin2(3
2

𝛼𝛼) ≈ ∆𝐸𝐸 9
4

𝛼𝛼2. (11) 

where ∆𝐸𝐸 is, for example, about 14 kJ/mol for 

propane [13], and varies slowly with chain length. 

𝐸𝐸(𝛼𝛼) has three minima, at 𝛼𝛼 = 0°   and ±120°, 

with energy barriers in-between (Fig.  8). Thus, if 

the twist of the spacer is uniformly distributed 

along its length, then 𝐸𝐸(Δ𝜑𝜑) ≈ 6𝐸𝐸(𝛼𝛼) ≈

6𝐸𝐸 �Δ𝑑𝑑
6

� = 3
8

∆𝐸𝐸Δ𝜑𝜑2. The energy density (i.e. per 

unit volume) of the twisted dimers is: 

 𝑓𝑓 = 𝐸𝐸(Δ𝜑𝜑) 𝜌𝜌
𝑀𝑀

≈ 5 ∙ 106 Δ𝜑𝜑2 J/m3,  (12) 

Fig. 7. Schematic representation of the 
twist of the alkyl spacer between 
monomers in a dimer molecule. (a) The 
planes containing the monomers and the 
normal to the layers form an angle 𝛿𝛿, 
resulting in a layer-to-layer rotation of 
the 𝛄𝛄-director. (b) Relative rotation of 
neighboring CH2 groups by an angle 𝛼𝛼 
(greatly exaggerated for clarity) as 
compared to an untwisted (all-trans) 
alkyl chain (c). 
 
 
 

∆ϕ  

−𝛼𝛼 
𝛼𝛼 

a 

b 

c 
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where 𝜌𝜌 ~ 103 kg/m3 is the mass density of the SmAb phase and 𝑀𝑀 ~ 1 kg/mol is the molar mass 

of the dimer. On the other hand, the Frank elastic energy for the same twist is: 

𝑓𝑓𝐹𝐹 = 1
2

𝐾𝐾22
𝑚𝑚  [𝐦𝐦 ∙ (𝛁𝛁 × 𝐦𝐦)]2 = 1

2
𝐾𝐾22

𝑚𝑚 �Δ𝑑𝑑
𝑑𝑑

�
2

≈ 1017𝐾𝐾22
𝑚𝑚  Δ𝜑𝜑2  (13) 

where d is the thickness of the layer. Here, 

d ≈ 2.2 nm, as obtained from the X-ray analysis of 

the SmAb structure [4]. Comparing Eq. (10) and 

(11) provides an estimate of the twist elastic 

constant of 𝐾𝐾22
𝑚𝑚 ≈ 5 ∙ 10−11N, which is more than 

two orders of magnitude larger than the 

experimental value of 4 ∙ 10−13N (Fig. 3). This 

analysis shows that twisting the spacer requires too 

much energy and therefore does not contribute to 

the twist distortion of the phase. Consequently, in 

the following, the dimers will be considered as rigid 

bodies. 

 

 IV.3 ESTIMATE OF THE CONTRIBUTION OF THE ROTATION OF RIGID 

DIMERS TO 𝐾𝐾22
𝑚𝑚  

To estimate the contribution of dimer rotation to 𝐾𝐾22
𝑚𝑚 , we consider the twisted SmAb 

structure shown in Fig. 9. The director 𝐦𝐦𝑖𝑖  lies in the plane of the layer and its azimuthal 

orientation, obtained by averaging the projections of the long molecular axis of the monomers on 

the plane of the layer, defines the origin of azimuthal angles. Each layer, i, consists of two 

populations of monomers, belonging to the dimers forming the intercalated layers, characterised 

by the directors 𝐦𝐦+ and 𝐦𝐦− of the dimers, respectively. Within the same layer, i, the directors  

𝐦𝐦+ and 𝐦𝐦− are rotated by + ∆𝑑𝑑
2

 and − ∆𝑑𝑑
2

 with respect to 𝐦𝐦𝑖𝑖, respectively, and form an angle 

∆𝜑𝜑.  The nematic-like director of the ith layer,  𝛄𝛄𝑖𝑖, lies at the azimuthal angle 𝜑𝜑 = 0. In the 

adjacent layers i ±1, the directors 𝛄𝛄𝑖𝑖−1 and 𝛄𝛄𝑖𝑖+1 lie in planes at angles  −∆𝜑𝜑 and +∆𝜑𝜑 , 

respectively. For the intercalated dimers with monomers that belong to the same layer, the 

Fig. 8. Simplified 𝐸𝐸(𝛼𝛼) represented 
according to Eq. (11). 
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optimal orientation of the plane of the dimer is at the 

bisector of the angle between two planes defined by the 

normal to the layer and 𝐦𝐦+ and  𝐦𝐦−, respectively (Fig.  

9).  

In the case of uniform (untwisted) alignment of the 

SmAb phase, the nematic order of the monomers in the 

ith  layer  is  characterised  by  the  director                     

𝛄𝛄𝑖𝑖 = (0, sin 𝜓𝜓, cos 𝜓𝜓). The orientational distribution 

function (ODF) is: 

𝑓𝑓(𝛽𝛽) = 1
2

[1 + 5〈𝑃𝑃2〉𝑃𝑃2(cos 𝛽𝛽) + 9〈𝑃𝑃4〉𝑃𝑃4(cos 𝛽𝛽) + ⋯],

   (14) 

where 𝛽𝛽 is the angle between the long axis of the monomer and the director 𝛄𝛄𝑖𝑖 , 𝑃𝑃𝑙𝑙(cos 𝛽𝛽) is the 

Legendre polynomial, and 〈𝑃𝑃𝑙𝑙〉 = 〈𝑃𝑃𝑙𝑙(cos 𝛽𝛽)〉 is the order parameter, both of rank 𝑙𝑙.  

In the case of a twist distortion of the SmAb phase, there are in each layer two distinct 

populations of monomers. The first population consists of the monomers belonging to the dimers 

that span the layers i and i +1. The director 𝛄𝛄+ associated with this population has components 

𝛄𝛄+ = (sin 𝜓𝜓 sin 𝑑𝑑
2

, sin 𝜓𝜓 cos 𝑑𝑑
2

, cos 𝜓𝜓) and its ODF is given by: 

 𝑓𝑓+(𝛽𝛽+) = 1
2

[1 + 5〈𝑃𝑃2
+〉𝑃𝑃2(cos 𝛽𝛽+) + 9〈𝑃𝑃4

+〉𝑃𝑃4(cos 𝛽𝛽+) + ⋯].   (15) 

The second population consists of the monomers belonging to dimers that span over the layer i -

1 and i, and are characterized by the director  𝛄𝛄− = (−sin 𝜓𝜓 sin 𝑑𝑑
2

, sin 𝜓𝜓 cos 𝑑𝑑
2

, cos 𝜓𝜓) and ODF: 

 𝑓𝑓−(𝛽𝛽−) = 1
2

[1 + 5〈𝑃𝑃2
−〉𝑃𝑃2(cos 𝛽𝛽−) + 9〈𝑃𝑃4

−〉𝑃𝑃4(cos 𝛽𝛽−) + ⋯ ].    (16) 

(Here 𝛽𝛽± and 〈𝑃𝑃𝐿𝐿
±〉 are defined in the same way as in the case of the uniform SmAb.) In the 

twisted SmAb, the total ODF splits into two terms:  𝑓𝑓𝑡𝑡(𝛽𝛽𝑡𝑡) = 1
2

[𝑓𝑓+(𝛽𝛽+) + 𝑓𝑓−(𝛽𝛽−)], which 

leads to an increase in the free energy of the nematic (Fig.10) and a decrease in the nematic-like 

order within the layer. This effectively lowers the order parameter within the layer and requires 

additional condensation energy. To estimate this energy cost we consider the potential energy 

Fig. 9. Schematic representation 
of the twist in anticlinic SmAb 
consisting of rigid dimers. 

𝒎𝒎−- 

𝒎𝒎+ 

+
∆𝝋𝝋
𝟐𝟐  

−
∆𝝋𝝋
𝟐𝟐  

−∆𝝋𝝋 

+∆𝝋𝝋 
𝜸𝜸𝒊𝒊 

𝜸𝜸𝒊𝒊−𝟏𝟏 

𝜸𝜸𝒊𝒊+𝟏𝟏 

𝒎𝒎𝒊𝒊 
𝜸𝜸𝒊𝒊 
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 𝑈𝑈1(𝛽𝛽) of a single monomer in the mean field 

of all the others. For ∆𝜑𝜑 = 0, the Maier-

Saupe potential is:    

𝑈𝑈1(𝛽𝛽) = 𝑢𝑢2〈𝑃𝑃2(cos 𝛽𝛽)〉𝑃𝑃2(cos 𝛽𝛽), (17) 

where 𝑢𝑢2 is the amplitude, in kT units, of the 

bi-particle potential averaged over all possible 

values of the radius-vector of the particle 

separation, 𝛽𝛽 is the angle between the long 

axis of the monomer, labelled L, and the 

director 𝛄𝛄𝑖𝑖, with  cos 𝛽𝛽 = 𝐋𝐋 ∙ 𝛄𝛄𝑖𝑖. The order 

parameter of the untwisted state is: 

𝑆𝑆0 = 𝑆𝑆(∆𝜑𝜑 = 0 ) = 〈𝑃𝑃2(cos 𝛽𝛽)〉 = ∫ 𝑃𝑃2(cos 𝛽𝛽)𝑓𝑓(𝛽𝛽)𝑑𝑑 cos 𝛽𝛽1
−1 .   (18) 

In the case of the twisted distortion and due to the splitting of the ODF, the potential is: 

𝑈𝑈1(𝛽𝛽) = 1
2

𝑢𝑢2[〈𝑃𝑃2(cos 𝛽𝛽+)〉𝑃𝑃2(cos 𝛽𝛽+) + 〈𝑃𝑃2(cos 𝛽𝛽−)〉𝑃𝑃2(cos 𝛽𝛽−)] = 1
2

𝑢𝑢2𝑆𝑆0[𝑃𝑃2(cos 𝛽𝛽+) +

                                                                 𝑃𝑃2(cos 𝛽𝛽−)],       (19) 

where 𝛽𝛽± is defined as above. We assume that the distribution functions of the two populations 

of monomers are the same as in the untwisted case: 𝑓𝑓(𝛽𝛽) = 𝑓𝑓+(𝛽𝛽+) = 𝑓𝑓−(𝛽𝛽−). 

 To facilitate the calculation, we introduce a modified cartesian coordinate system (1, 2, 

3) with the 2-axis in the same direction as the y-axis in the 𝐋𝐋 - centred system and the 3-axis 

coinciding with 𝛄𝛄𝑖𝑖 (Fig.  11).  

 (21) 

Fig. 10. Schematic 2D presentation of 
𝑓𝑓−(𝛽𝛽−) (long dashes), 𝑓𝑓+(𝛽𝛽+) 
(medium dashes), 𝑓𝑓+(𝛽𝛽+) + 𝑓𝑓−(𝛽𝛽−) 
(solid line) and 𝑓𝑓(𝛽𝛽) (short dashes). 
∆𝜑𝜑 is the twist angle per layer. 

𝑓𝑓(𝛽𝛽) 

𝛽𝛽 

∆𝜑𝜑 
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Thus, in the (1, 2, 3) system: 

𝛄𝛄𝑖𝑖
+ = 𝛄𝛄𝑖𝑖

+(∆𝜑𝜑) = �sin 𝜓𝜓 cos 𝜓𝜓 �1 − cos Δ𝑑𝑑
2

� , sin 𝜓𝜓 sin Δ𝑑𝑑
2

, 1 − sin2 𝜓𝜓 �1 − cos Δ𝑑𝑑
2

�� ≈

�1
8

sin 𝜓𝜓 cos 𝜓𝜓∆𝜑𝜑2, 1
2

sin 𝜓𝜓 Δ𝜑𝜑, 1 − 1
8

sin2 𝜓𝜓 ∆𝜑𝜑2�   (20) 

(Here we kept terms up to ∆𝜑𝜑2). 

cos 𝛽𝛽+ = 𝐋𝐋 ∙ 𝛄𝛄𝑖𝑖
+ = 1

8
sin 𝜓𝜓 cos 𝜓𝜓 sin 𝛽𝛽 cos 𝛼𝛼 ∆𝜑𝜑2 + 1

2
sin 𝜓𝜓 sin 𝛽𝛽 sin 𝛼𝛼 Δ𝜑𝜑 + cos 𝛽𝛽 −

1
8

sin2 𝜓𝜓 cos 𝛽𝛽 ∆𝜑𝜑2 = cos 𝛽𝛽 + 𝐴𝐴Δ𝜑𝜑 + 𝐵𝐵∆𝜑𝜑2,    (21) 

where 

𝐴𝐴 = 1
2

sin 𝜓𝜓 sin 𝛽𝛽 sin 𝛼𝛼     (22) 

B=1
8

(sin 𝜓𝜓 cos 𝜓𝜓 sin 𝛽𝛽 cos 𝛼𝛼 − sin2 𝜓𝜓 cos 𝛽𝛽).   (23) 

Squaring Eq.21 and keeping terms up to ∆𝜑𝜑2 gives: 

 cos2 𝛽𝛽+ ≈ cos2 𝛽𝛽 + 2𝐴𝐴 cos 𝛽𝛽 Δ𝜑𝜑 + (𝐴𝐴2 + 2𝐵𝐵 cos 𝛽𝛽)∆𝜑𝜑2.    (24) 

Since 𝛄𝛄𝑖𝑖
+(-Δ𝜑𝜑) = 𝛄𝛄𝑖𝑖

−(Δ𝜑𝜑) : 

x 2=y 

z 

+
∆𝝋𝝋
𝟐𝟐  

−
∆𝝋𝝋
𝟐𝟐  

𝜓𝜓 

𝛄𝛄𝒊𝒊 
𝛄𝛄𝑖𝑖

− 

𝛄𝛄𝒊𝒊
+ 

1 

𝛄𝛄𝒊𝒊 

𝛄𝛄𝒊𝒊
− 𝛄𝛄𝒊𝒊

+ 

3 

y 

𝐋𝐋 

𝜶𝜶 

𝛽𝛽

𝛽𝛽− 𝛽𝛽+

a b 

𝜸𝜸𝒊𝒊 = (0, 0, 1) 

𝐋𝐋 = (sin 𝛽𝛽 cos 𝛼𝛼, sin 𝛽𝛽 sin 𝛼𝛼 , cos 𝛽𝛽 

𝐋𝐋 ∙ 𝜸𝜸𝒊𝒊 = cos 𝛽𝛽 

𝜸𝜸𝒊𝒊 = (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 , 0,  𝑐𝑐𝑐𝑐𝑠𝑠 𝜓𝜓) 

𝜸𝜸𝒊𝒊
+ = (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 𝑐𝑐𝑐𝑐𝑠𝑠

𝛥𝛥𝜑𝜑
2 , 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 𝑠𝑠𝑠𝑠𝑠𝑠

𝛥𝛥𝜑𝜑
2 ,  𝑐𝑐𝑐𝑐𝑠𝑠 𝜓𝜓) 

𝜸𝜸𝒊𝒊
+ = (− 𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 𝑐𝑐𝑐𝑐𝑠𝑠

𝛥𝛥𝜑𝜑
2 , −𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓 𝑠𝑠𝑠𝑠𝑠𝑠

𝛥𝛥𝜑𝜑
2 ,  𝑐𝑐𝑐𝑐𝑠𝑠 𝜓𝜓) 

  

Fig. 11. (a) Standard cartesian system of coordinates (x, y, z) and (b) modified system of 
coordinates (1, 2, 3). The modified system is obtained by rotating the standard system 
about the y-axis by an angle 𝜓𝜓 counter-clockwise. The vectors 𝛄𝛄𝒊𝒊, 𝛄𝛄𝒊𝒊

+,𝛄𝛄𝒊𝒊
−, 𝐋𝐋 and their 

components in the standard and modified coordinate systems are also shown. 
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cos2 𝛽𝛽− ≈ cos2 𝛽𝛽 − 2𝐴𝐴 cos 𝛽𝛽 Δ𝜑𝜑 + (𝐴𝐴2 + 2𝐵𝐵 cos 𝛽𝛽)∆𝜑𝜑2.     (25) 

Combining equations (24) and (25) and introducing the Legendre polynomials 𝑃𝑃2(cos 𝛽𝛽±) =
1
2

(3 cos2 𝛽𝛽± − 1) and 𝑃𝑃2(cos 𝛽𝛽) = 1
2

(3 cos2 𝛽𝛽 − 1) one obtains: 

1
2

�𝑃𝑃2(cos 𝛽𝛽+) + 𝑃𝑃2(cos 𝛽𝛽−)� = 3
4

(cos2 𝛽𝛽+ + cos2 𝛽𝛽−) − 1
2

= 3
2

cos2 𝛽𝛽 − 1
2

+ (𝐴𝐴2 +

2𝐵𝐵 cos 𝛽𝛽)∆𝜑𝜑2 = 𝑃𝑃2(cos 𝛽𝛽) + 1
4

(sin2 𝜓𝜓 sin2 𝛽𝛽 sin2 𝛼𝛼 + sin 𝜓𝜓 cos 𝜓𝜓 sin 𝛽𝛽 cos 𝛽𝛽 cos 𝛼𝛼 −
sin2 𝜓𝜓 cos2 𝛽𝛽) ∆𝜑𝜑2.      (26) 

This expression is biaxial due to the 𝛼𝛼-dependence in the last term. Averaging over  𝛼𝛼  results in: 

1
2𝜋𝜋 ∫ 1

2
�𝑃𝑃2(cos 𝛽𝛽+) + 𝑃𝑃2(cos 𝛽𝛽−)�2𝜋𝜋

0 𝑑𝑑𝜑𝜑 = 𝑃𝑃2(cos 𝛽𝛽) + 1
4

sin2 𝜓𝜓 �1
2

sin2 𝛽𝛽 − cos2 𝛽𝛽� ∆𝜑𝜑2 =

𝑃𝑃2(cos 𝛽𝛽) �1 − 1
4

sin2 𝜓𝜓 ∆𝜑𝜑2�.     (27) 

Finally, the one-particle potential is now: 

𝑈𝑈1(𝛽𝛽) = 𝑢𝑢2 �1 − 1
4

sin2 𝜓𝜓 ∆𝜑𝜑2� 𝑆𝑆0𝑃𝑃2(cos 𝛽𝛽).    (28) 

This expression is different from the usual Maier-Saupe form, however, renormalization of the 

order parameter in terms of the per-layer twist angle ∆𝜑𝜑 results in  

〈𝑃𝑃2(cos 𝛽𝛽)〉 = 𝑆𝑆(∆𝜑𝜑) = 𝑆𝑆0 �1 − 1
4

sin2 𝜓𝜓 ∆𝜑𝜑2� = 𝑆𝑆0 − 𝛿𝛿𝑆𝑆, 

where 𝛿𝛿𝑆𝑆 = 𝑆𝑆0
1
4

sin2 𝜓𝜓 ∆𝜑𝜑2 and brings (28) to a more familiar form: 

𝑈𝑈1(𝛽𝛽) = 𝑢𝑢2𝑆𝑆(∆𝜑𝜑)𝑃𝑃2(cos 𝛽𝛽).      (29) 

Thus, the standard Maier-Saupe model is applicable:  

𝑓𝑓(𝛽𝛽) = 1
𝑍𝑍

𝑒𝑒
−𝑈𝑈1(𝛽𝛽)

𝑘𝑘𝑘𝑘  with 𝑍𝑍 = ∫ 𝑒𝑒
−𝑈𝑈1(𝛽𝛽)

𝑘𝑘𝑘𝑘
1

−1 𝑑𝑑 cos 𝛽𝛽 and 𝑆𝑆 = 〈𝑃𝑃2(cos 𝛽𝛽)〉 =

∫ 𝑃𝑃2(cos 𝛽𝛽)1
−1  𝑓𝑓(𝛽𝛽)𝑑𝑑 cos 𝛽𝛽. (30) 

As a next step, we calculate the free energy of the twisted state. The molar free energy in SI 

units is [14]: 

𝐴𝐴𝑚𝑚 = − 1
2

𝑁𝑁𝐴𝐴𝑢𝑢2𝑆𝑆2 − 𝑅𝑅𝑇𝑇ln𝑍𝑍 = �− 1
2

𝑢𝑢2
𝑘𝑘𝑘𝑘

𝑆𝑆2 − ln𝑍𝑍� 𝑅𝑅𝑇𝑇.   (31) 

Correspondingly, the free energy density is 𝐴𝐴𝑉𝑉 = 𝐴𝐴𝑚𝑚
𝜌𝜌
𝑀𝑀

, where [4] 𝜌𝜌 ≈ 103 kg/m3 is the density 

of the substance, 𝑀𝑀 ≈  0.4 kg/mol is the molar mass of the monomer, 𝑇𝑇 ≈  400K (which is close 

to the experimental conditions), and 𝑅𝑅 = 8.314 J/(mol⋅K) is the universal gas constant. Thus, 
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𝐴𝐴𝑉𝑉 = 𝜌𝜌
𝑀𝑀

𝑅𝑅𝑇𝑇𝐸𝐸(𝑆𝑆) ≈ 2500 𝐴𝐴𝑚𝑚 ≈ 8 ∙ 106𝐸𝐸(𝑆𝑆), where 𝐸𝐸(𝑆𝑆) = − 1
2

𝑢𝑢2
𝑘𝑘𝑘𝑘

𝑆𝑆2 − ln𝑍𝑍. 

Then, we have for the untwisted and twisted cases: 

𝐴𝐴𝑉𝑉|𝑆𝑆0 = 𝐴𝐴𝑉𝑉|∆𝑑𝑑=0 = 𝜌𝜌
𝑀𝑀

𝑅𝑅𝑇𝑇𝐸𝐸(𝑆𝑆0)      (32) 

𝐴𝐴𝑉𝑉|𝑆𝑆 = 𝐴𝐴𝑉𝑉|𝑆𝑆0−𝛿𝛿𝑆𝑆 = 𝜌𝜌
𝑀𝑀

𝑅𝑅𝑇𝑇𝐸𝐸(𝑆𝑆0 − 𝛿𝛿𝑆𝑆)          (33) 

and therefore the variation in free energy density is: 

𝛿𝛿𝐴𝐴𝑉𝑉 = 𝐴𝐴𝑉𝑉|𝑆𝑆 − 𝐴𝐴𝑉𝑉|𝑆𝑆0 = 𝜌𝜌
𝑀𝑀

𝑅𝑅𝑇𝑇 𝑑𝑑𝐸𝐸
𝑑𝑑𝑆𝑆

|𝑆𝑆=𝑆𝑆0(−𝛿𝛿𝑆𝑆) = 𝜌𝜌
𝑀𝑀

𝑅𝑅𝑇𝑇 𝑑𝑑𝐸𝐸
𝑑𝑑𝑆𝑆

|𝑆𝑆=𝑆𝑆0 �− 1
4

𝑆𝑆0 sin2 𝜓𝜓 ∆𝜑𝜑2�  (34) 

This variation corresponds to an increase in the condensation energy density of the “monomer 

nematic” and is equivalent to the twist distortion energy density of the SmAb: 

 𝛿𝛿𝐴𝐴𝑉𝑉 = 1
2

𝐾𝐾22
𝑚𝑚 �∆𝑑𝑑

𝑑𝑑
�

2
.      (35) 

Comparison of equations (34) and (35) then gives: 

𝐾𝐾22
𝑚𝑚 = − 1

4
𝑆𝑆0 sin2 𝜓𝜓 𝑑𝑑2 𝜌𝜌

𝑀𝑀
𝑅𝑅𝑇𝑇 𝑑𝑑𝐸𝐸

𝑑𝑑𝑆𝑆
|𝑆𝑆=𝑆𝑆0 .     (36) 

Eq. (36) is then used to calculate 𝐾𝐾22
𝑚𝑚.   

 

IV.4 NUMERICAL CALCULATIONS OF 𝐾𝐾22
𝑚𝑚  

We calculate 𝑆𝑆0 = 𝑆𝑆0(− 𝑢𝑢2
𝑘𝑘𝑘𝑘

) and 𝑆𝑆0
𝑑𝑑𝐸𝐸
𝑑𝑑𝑆𝑆

|𝑆𝑆=𝑆𝑆0 numerically, using − 𝑢𝑢2
𝑘𝑘𝑘𝑘

 as an independent variable. 

In our calculations we keep − 𝑢𝑢2
𝑘𝑘𝑘𝑘

> ~ 4.5, which is typical for the nematic phase.  𝐾𝐾22
𝑚𝑚 is then 

calculated according to (36), using  𝑑𝑑 = 2.2 

nm and 𝜓𝜓 = 30° obtained in our previous 

work [4]. The calculated values of 

𝑆𝑆0
𝑑𝑑𝐸𝐸
𝑑𝑑𝑆𝑆

|𝑆𝑆=𝑆𝑆0 and 𝐾𝐾22
𝑚𝑚 are presented in figure 

12, along with the measured value of 

𝐾𝐾22
𝑚𝑚 = 0.3 pN (see figure 3),  the value of 

𝑆𝑆0 = 0.465 which corresponds to the 

calculated value (solid line) of 𝐾𝐾22
𝑚𝑚 = 0.3 pN, 

and the calculated value of 𝑆𝑆0
𝑑𝑑𝐸𝐸
𝑑𝑑𝑆𝑆

|𝑆𝑆=𝑆𝑆0 = -

0.075 at 𝑆𝑆0 = 0.465. Thus, based on the 
Fig. 12. Calculated 𝑆𝑆0

𝑑𝑑𝐸𝐸
𝑑𝑑𝑆𝑆

|𝑆𝑆=𝑆𝑆0  (blue line) and 
𝐾𝐾22

𝑚𝑚 (red line).  
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measurement of 𝐾𝐾22
𝑚𝑚 = 0.3 pN, the results of the model are: 𝑢𝑢2

𝑘𝑘𝑘𝑘
 = -4.59, 𝑆𝑆0 = 0.465, and 

𝑆𝑆0
𝑑𝑑𝐸𝐸
𝑑𝑑𝑆𝑆

|𝑆𝑆=𝑆𝑆0 = -0.075. 

 

V. DISCUSSION. 

To test the model, we now compare it with 

the experimental data [4,5]. We have shown 

that the nematic-like elastic moduli of the 

SmAb phase, 𝐾𝐾11
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚, can be expressed in 

terms of the Frank moduli 𝜅𝜅11, 𝜅𝜅22, and 𝜅𝜅33 of the equivalent nematic slab and the average tilt 

angle, 𝜓𝜓, of the monomers in the slab [Eq. (7) and (8)]. Because the monomers forming the 

dimers have a typical rod-like mesogenic shape, we could measure the elastic properties of a 

nematogenic compound with chemical structure close to that of the monomer units of the 

dimers, and then use these measurements to obtain 𝐾𝐾11
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚. For this purpose, we 

synthesised the compound 6-Hexylnaphthalen-2-yl 4-(hexyloxy)benzoate (BNAM-66) 

(Supporting information) which is very similar to the monomer unit of BNA-76 (Fig. 13). As 

expected, this compound forms a nematic phase in the temperature range between 84o C and 118 

°C. We measured the temperature dependence of all three elastic moduli 𝐾𝐾�𝑖𝑖𝑖𝑖 of this compound in 

the nematic phase (the detailed results will be published elsewhere) and found that the 𝐾𝐾�𝑖𝑖𝑖𝑖 show 

the behaviour typical of rod-like nematogens: 𝐾𝐾�33 increases from 4.5 pN to 16 pN with 

decreasing temperature and the ratios of the moduli are temperature independent, with  

𝐾𝐾�33/𝐾𝐾�22 ≈ 2.5 and 𝐾𝐾�33/𝐾𝐾�11 ≈ 1.1. After a renormalization procedure taking into account the 

low order parameter of the equivalent in-layer nematic, the values obtained 𝐾𝐾�𝑖𝑖𝑖𝑖 were used in Eqs.  

(7) and (8) to calculate 𝐾𝐾11
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚. Using Eqs. (7) and (8) and 𝜓𝜓 ≈ 30° [4], the estimates 𝐾𝐾11
𝑚𝑚 ≈

1
4

𝜅𝜅11, 𝐾𝐾33
𝑚𝑚 ≈ 0.19𝜅𝜅22 + 1

16
𝜅𝜅33, and   𝐾𝐾33

𝑚𝑚 ≈ 0.14𝜅𝜅33 ≈ 0.6 𝐾𝐾11
𝑚𝑚 were obtained. Therefore, 𝐾𝐾33

𝑚𝑚 ≪

𝜅𝜅33, 𝐾𝐾33
𝑚𝑚 < 𝐾𝐾11

𝑚𝑚, and 𝐾𝐾11
𝑚𝑚 ≪ 𝜅𝜅11, which is in good qualitative agreement with the experimental 

data [4], and, as expected, 𝐾𝐾11
𝑚𝑚/𝐾𝐾33

𝑚𝑚 is essentially independent of temperature. However, more 

quantitatively, the predicted ratio 𝐾𝐾11
𝑚𝑚/𝐾𝐾33

𝑚𝑚  is lower than the experimentally observed value of 

≈ 3.  

Fig. 13 Chemical structure of BNAM-66 
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Our model suggests that the mechanism of twist deformation in the SmAb phase is quite 

different from the usual one. The main contribution to the distortion energy comes from a 

decrease in the condensation energy of the monomer nematic, which effectively lowers the order 

parameter within the monomer layer. This explains the significant decrease of the twist modulus 

with respect to the bend modulus in the SmAb phase. Indeed, the measured value of 

𝐾𝐾22
𝑚𝑚/𝐾𝐾33

𝑚𝑚 ≈  0.1 is much smaller than the typical one for rod-shaped nematics (𝐾𝐾22
𝐾𝐾33

≈

0.3– 0.5 ), including the BNAM-66 compound. The order parameter for the in-layer orientational 

order of the monomers estimated from the measured 𝐾𝐾22
𝑚𝑚 value is quite low: 𝑆𝑆0 = 0.465. 

However, it is still above the threshold value, 𝑆𝑆0 = 0.43, predicted by the Maier-Saupe model at 

the nematic-isotropic phase transition.  

Our model provides a good qualitative explanation of the unusual behaviour of the nematic 

elastic moduli 𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚 observed in the SmAb phase, which includes: (i) a ratio of 𝐾𝐾11

𝑚𝑚 to 𝐾𝐾33
𝑚𝑚  larger 

than 1 and independent of temperature; (ii) rather small (compared to usual nematics) values of 

𝐾𝐾11
𝑚𝑚  and 𝐾𝐾33

𝑚𝑚; (iii) a very small twist elastic modulus 𝐾𝐾22
𝑚𝑚, which is at least an order of magnitude 

smaller than the same constant for rod-shaped nematics. Quantitatively, however, the measured 

ratio 𝐾𝐾11
𝑚𝑚 /𝐾𝐾33

𝑚𝑚  ≈ 3 is slightly larger than the value (1.7) predicted by the model. Also, the 

comparison of the theoretical expressions for 𝐾𝐾11
𝑚𝑚 and 𝐾𝐾33

𝑚𝑚 with the experimental values suggests 

that the 𝜅𝜅11 and 𝜅𝜅33 moduli of the equivalent in-layer nematic are large, and more strongly 

temperature dependent. This should reflect the behaviour of the order parameter of the 

equivalent nematic, S0, which contradicts the small value and weak temperature dependence of 

S0 predicted by the model.  

This quantitative discrepancy between model and experiment is likely due to the nature of 

the mean-field theory used, which requires numerous approximations. The most important 

approximation is that the equivalent nematic is considered here to be uniaxial. In the SmAb 

phase, the molecules of the dimer are oriented normal to the smectic layer and their orientational 

order parameter is probably large. Due to the rather rigid spacer of the dimer, the zenithal (out-

of-layer) average deviation of the monomer axis from the 𝛄𝛄 -director should be much smaller 

than the azimuthal (in-layer) one. Therefore, the nematic slabs representing the layers of 

monomers should be biaxial. However, for simplicity, we neglected this biaxiality and treated 

the equivalent nematic according to the Maier-Saupe model, originally developed for rod-like 
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nematics. More quantitative agreement can be expected by modelling the equivalent nematic as 

biaxial rather than uniaxial, but such a model is beyond the scope of the present work.  

Several other approximations may also affect the results. For example, we neglected the 

contribution of the spacer to molecular interactions, which can affect the average molecular tilt 

angle 𝜓𝜓 in the slabs. We also used BNAM-66 as a substitute for the monomer moiety. Moreover, 

our numerical calculation of the twist elastic modulus 𝐾𝐾22
𝑚𝑚 as a function of the order parameter 

S0, did not take into account the anticlinic organisation of the monomer layers. If considered, it 

could increase the estimated value of S0 and lead to a stronger temperature dependence of the 

order parameter, which may result in a better agreement with the experimental data. 

 

VI CONCLUSIONS 

 We have presented a simple model that qualitatively explains the mechanism of nematic-

like elasticity associated with distortions of the secondary director m in the intercalated biaxial 

SmAb phase by a variation of the in-plane orientational order of the monomers. The model 

qualitatively describes the main properties of the three nematic-like elastic moduli 𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚, which 

are: 𝐾𝐾11
𝑚𝑚/𝐾𝐾33

𝑚𝑚 > 1, 𝐾𝐾𝑖𝑖𝑖𝑖
𝑚𝑚 < 𝐾𝐾𝑖𝑖𝑖𝑖

𝑛𝑛, 𝐾𝐾22
𝑚𝑚 ≪ 𝐾𝐾11

𝑚𝑚, 𝐾𝐾33
𝑚𝑚, and the independence of the 𝐾𝐾11

𝑚𝑚/𝐾𝐾33
𝑚𝑚  ratio from 

temperature. Quantitatively, the model gives  𝐾𝐾11
𝑚𝑚/𝐾𝐾33

𝑚𝑚 ≈ 1.7, which is slightly lower than the 

experimental value of 𝐾𝐾11
𝑚𝑚/𝐾𝐾33

𝑚𝑚 ≈ 3. This discrepancy may be the result of the numerous 

approximations involved in the model that ignores direct layer-to-layer interaction, and/or the 

use of estimated values of elastic constants.  
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