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Abstract

We address Partial MaxSAT (PMS) and Weighted
PMS (WPMS), two practical generalizations of the
MaxSAT problem, and propose a local search al-
gorithm for these problems, called BandMaxSAT,
that applies a multi-armed bandit model to guide
the search direction. The bandit in our method
is associated with all the soft clauses in the in-
put (W)PMS instance. Each arm corresponds to
a soft clause. The bandit model can help Band-
MaxSAT to select a good direction to escape from
local optima by selecting a soft clause to be sat-
isfied in the current step, that is, selecting an arm
to be pulled. We further propose an initializa-
tion method for (W)PMS that prioritizes both unit
and binary clauses when producing the initial so-
lutions. Extensive experiments demonstrate that
BandMaxSAT significantly outperforms the state-
of-the-art (W)PMS local search algorithm SAT-
Like3.0. Specifically, the number of instances
in which BandMaxSAT obtains better results is
about twice that obtained by SATLike3.0. More-
over, we combine BandMaxSAT with the complete
solver TT-Open-WBO-Inc. The resulting solver
BandMaxSAT-c also outperforms some of the best
state-of-the-art complete (W)PMS solvers, includ-
ing SATLike-c, Loandra and TT-Open-WBO-Inc.

1 Introduction

As an optimization extension of the famous Boolean Satisfi-
ability (SAT) decision problem, the Maximum Satisfiability
(MaxSAT) problem aims at finding a complete assignment
of the Boolean variables to satisfy as many clauses as
possible in a given propositional formula in Conjunc-
tive Normal Form (CNF) [Li and Manyà, 2021]. Partial
MaxSAT (PMS) is a variant of MaxSAT where the clauses
are divided into hard and soft. PMS aims at maximizing
the number of satisfied soft clauses with the constraint
that all the hard clauses must be satisfied. Associating
a positive weight to each soft clause in PMS results in
Weighted PMS (WPMS), whose goal is to maximize the
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total weight of satisfied soft clauses with the same constraint
of PMS that all the hard clauses must be satisfied. Both
PMS and WPMS, denoted as (W)PMS, have many prac-
tical applications such as planning [Bonet et al., 2019],
combinatorial testing [Ansótegui et al., 2022],
group testing [Ciampiconi et al., 2020], and
timetabling [Demirovic and Musliu, 2017].

In this paper, we focus on the local search approach,
which is a well-studied category of incomplete (W)PMS al-
gorithms and exhibits promising performance on random and
crafted (W)PMS instances. Recent well-performing (W)PMS
local search algorithms, such as Dist [Cai et al., 2014],
CCEHC [Luo et al., 2017], SATLike [Lei and Cai, 2018] and
SATLike3.0 [Cai and Lei, 2020], all start from an initial com-
plete assignment and then flip the Boolean value of a selected
variable per step to find better solutions. These local search
algorithms follow similar procedures to escape from local op-
tima. Note that a local optimum indicates that flipping any
single variable cannot improve the current solution.

When falling into an infeasible local optimum (i.e., there
are falsified hard clauses), these algorithms first randomly
select a falsified hard clause and then satisfy it by flipping
one of its variables. The random strategy for selecting the
falsified hard clause is reasonable, since all the hard clauses
should be satisfied. However, when falling into a feasible lo-
cal optimum (i.e., there are no falsified hard clauses), these
algorithms still use the random strategy to determine the soft
clause to be satisfied in the current step, which may not be
a good strategy for the following reasons: 1) different from
hard clauses, not all the soft clauses should be satisfied. 2) the
high degree of randomness may lead to a small probability for
these algorithms to find a good search direction (satisfying a
falsified soft clause corresponds to a search direction).

To handle the above issues, we propose a multi-armed ban-
dit (MAB) local search algorithm, called BandMaxSAT, for
(W)PMS. MAB is a basic model in the field of reinforcement
learning [Slivkins, 2019; Lattimore and Szepesvári, 2020].
In an MAB reinforcement learning model, the agent needs
to select to pull an arm (i.e., perform an action) at each de-
cision step (i.e., state), which leads to some rewards. The
agent uses the rewards to evaluate the benefit of pulling each
arm and uses the evaluation values to decide the arm to be
pulled in each step. In summary, the MAB can be used to
help a program learn to select an appropriate item from mul-
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tiple candidates. Therefore, we propose to apply an MAB to
help the (W)PMS local search algorithm learn to select an ap-
propriate soft clause (i.e., a high-quality search direction) to
be satisfied, whenever the search falls into a feasible local op-
timum. Specifically, each arm in the bandit of BandMaxSAT
corresponds to a soft clause in the input (W)PMS instance.
Pulling an arm implies selecting the corresponding clause to
be satisfied in the current step.

There are related studies that apply MAB to MaxSAT. For
example, Goffinet and Ramanujan [2016] proposed an algo-
rithm for MaxSAT, based on Monte-Carlo tree search, where
a two-armed bandit is associated with each variable (node in
the search tree) to decide the branching direction, i.e., which
Boolean value assign to the variable. Their approach needs
a local search solver to evaluate the quality of the branch-
ing nodes, thus the performance relies on the local search
solver. Lassouaoui et al. [2019] proposed to use an MAB
model to select the low-level heuristics in a hyper-heuristic
framework for MaxSAT. Pulling an arm in their model im-
plies selecting a corresponding low-level heuristic to optimize
the current solution. They didn’t compare with the state-of-
the-art (in)complete MaxSAT algorithms, but only compared
with other hyper-heuristic methods. Our work proposes a
novel MAB model for (W)PMS that significantly improves
(W)PMS state-of-the-art local search methods. To our knowl-
edge, this is the first time that an MAB model is associated
with the clauses in a (W)PMS local search solver.

Moreover, inspired by the studies for SAT and MaxSAT
that prioritize both unit and binary clauses (i.e., clauses
with exactly one and two literals, respectively) over other
clauses [Chao and Franco, 1990; Chvátal and Reed, 1992;
Li et al., 2006], we propose a novel decimation approach that
prefers to satisfy both unit and binary clauses, denoted as hy-
brid decimation (HyDeci), for generating the initial assign-
ment in BandMaxSAT. The decimation method is a cate-
gory of incomplete approaches that proceeds by assigning the
Boolean value of some (usually one) variables sequentially
and simplifies the formula accordingly [Cai et al., 2017].
Decimation approaches that focus on unit clauses have been
used in MaxSAT [Cai et al., 2017; Cai and Lei, 2020]. How-
ever, it is the first time, to our knowledge, that a decimation
method concentrating on both unit and binary clauses is used
in MaxSAT. The experimental results demonstrate that con-
sidering both unit and binary clauses is better than only con-
sidering unit clauses.

To evaluate the performance of the proposed Band-
MaxSAT algorithm, we compare BandMaxSAT with
the state-of-the-art (W)PMS local search algorithm SAT-
Like3.0 [Cai and Lei, 2020]. The experiments show that
BandMaxSAT significantly outperforms SATLike3.0 on both
PMS and WPMS. Moreover, as one of the state-of-the-
art (W)PMS solvers, SATLike-c [Lei et al., 2021] combines
SATLike3.0 with an effective complete solver, TT-Open-
WBO-Inc [Nadel, 2019], and won three categories among
the total four (PMS and WPMS categories, each asso-
ciated with two time limits) of the incomplete track in
the latest MaxSAT Evaluation (MSE2021). By combining
BandMaxSAT with TT-Open-WBO-Inc, the resulting solver
BandMaxSAT-c also outperforms some of the best state-

of-the-art (W)PMS complete solvers, including SATLike-c,
Loandra [Berg et al., 2019], and TT-Open-WBO-Inc.

The main contributions of this work are as follows:

• We propose a multi-armed bandit (MAB) model that fits
well with the MaxSAT local search algorithms, and an
effective local search solver for (W)PMS, called Band-
MaxSAT, that applies the proposed bandit model to
guide the search direction.

• We demonstrate that there is a great potential to use
MAB in MaxSAT solving. Our proposed MAB model is
general and could be applied to improve other MaxSAT
local search algorithms.

• We propose a novel decimation method for (W)PMS, de-
noted as HyDeci, that prefers to satisfy both unit and
binary clauses. HyDeci provides high-quality initial as-
signments for BandMaxSAT, and could be applied to im-
prove other MaxSAT local search algorithms.

• Extensive experiments show that BandMaxSAT signif-
icantly outperforms the state-of-the-art (W)PMS local
search algorithm SATLike3.0. Moreover, by combin-
ing BandMaxSAT with the complete solver TT-Open-
WBO-Inc, the resulting solver BandMaxSAT-c also out-
performs the state-of-the-art (W)PMS complete solvers.

2 Preliminaries

Given a set of Boolean variables {x1, ..., xn}, a literal is ei-
ther a variable itself xi or its negation ¬xi; a clause is a
disjunction of literals, i.e., cj = lj1 ∨ ... ∨ ljnj

, where nj

is the number of literals in clause cj . A Conjunctive Nor-
mal Form (CNF) formula F is a conjunction of clauses, i.e.,
F = c1 ∧ ... ∧ cm. A complete assignment A represents a
mapping that maps each variable to a value of 1 (true) or 0
(false). A literal xi (resp. ¬xi) is true if the current assign-
ment maps xi to 1 (resp. 0). A clause is satisfied by the
current assignment if there is at least one true literal in the
clause.

Given a CNF formula F ,MaxSAT aims at finding an as-
signment that satisfies as many clauses in F as possible.
Given a CNF formula F whose clauses are divided into hard
and soft, PMS is a variant of MaxSAT that aims at finding
an assignment that satisfies all the hard clauses and maximize
the number of satisfied soft clauses in F , and WPMS is a
generalization of PMS where each soft clause is associated
with a positive weight. The goal of WPMS is to find an as-
signment that satisfies all the hard clauses and maximizes the
total weight of satisfied clauses in F . In the local search al-
gorithms for (Max)SAT, the flipping operator for a variable is
an operator that changes its Boolean value.

Given a (W)PMS instance F , a complete assignment A is
feasible if it satisfies all the hard clauses in F . The cost of
A, denoted as cost(A), is set to +∞ for convenience if A
is infeasible. Otherwise, cost(A) is equal to the number of
falsified soft clauses for PMS, and equal to the total weight of
falsified soft clauses for WPMS.

In addition, the effective clause weighting technique
is widely used in recent well-performing (W)PMS lo-
cal search algorithms [Cai et al., 2014; Luo et al., 2017;



Cai and Lei, 2020]. Algorithms with this technique asso-
ciate dynamic weights (independent of the original soft clause
weights in WPMS instances) to clauses and use the dynamic
weights to guide the search direction. BandMaxSAT also ap-
plies the clause weighting technique, and maintains dynamic
weights to both hard clauses and soft clauses with the clause
weighting strategy used in SATLike3.0 [Cai and Lei, 2020].

Given a (W)PMS instance F , the current assignment A,
and the dynamic clause weights, the commonly used scor-
ing function for a variable x, denoted as score(x), is defined
as the increment or reduction of the total dynamic weight of
satisfied clauses caused by flipping x in A. Moreover, a lo-
cal optimum for (W)PMS indicates that there are no variables
with positive score. A local optimum is feasible if there are
no falsified hard clauses, otherwise it is infeasible.

3 Methodology

The proposed local search algorithm BandMaxSAT consists
of the proposed hybrid decimation (HyDeci) initialization
process and the search process. During the local search pro-
cess, we use a multi-armed bandit that is associated with the
soft clauses to help BandMaxSAT learn to select good direc-
tions to escape from feasible local optima. This section first
introduces the HyDeci method and the bandit model used in
BandMaxSAT, and then the main process of BandMaxSAT.

3.1 Hybrid Decimation

HyDeci is an effective decimation method that prefers to sat-
isfy both unit and binary clauses. Since the clauses with
shorter lengths are easier to be falsified, preferring to satisfy
shorter clauses can reduce the number of falsified clauses,
which results in high-quality initial assignments. The proce-
dure of HyDeci is shown in Algorithm 1. We use SIMPLIFY
to refer to the process of simplifying the formula after assign-
ing a value to a variable.

HyDeci generates the initial complete assignment itera-
tively. In each iteration, HyDeci assigns the value of exactly
one variable. When there are unit clauses, HyDeci samples
a random unit clause (hard clauses take precedence) and then
satisfies it. When there is no unit clause but there are bi-
nary clauses, HyDeci first samples a random binary clause c
(hard clauses take precedence), and then selects one of the
two unassigned literals in c and satisfies it according to a
greedy strategy, that is, preferring to satisfy the literal whose
satisfaction leads to more satisfied soft clauses (or to a larger
total weight of satisfied soft clauses). When there are no unit
and binary clauses, HyDeci randomly selects an unassigned
variable and randomly assigns a Boolean value to it.

The main improvement of the proposed HyDeci algorithm
over the previous decimation approaches [Cai et al., 2017;
Cai and Lei, 2020] is that HyDeci not only concentrates on
unit clauses but also on binary clauses. The experimen-
tal results demonstrate that considering both unit and binary
clauses is better than only considering unit clauses to generate
high-quality initial assignments.

3.2 Multi-armed Bandit Model for (W)PMS

We propose a multi-armed bandit model for (W)PMS to help
BandMaxSAT learn to select the appropriate soft clause to

Algorithm 1: HyDeci(F )

Input: A (W)PMS instance F
Output: A complete assignment A of variables in F

1 while ∃ unassigned variables do
2 if ∃ hard unit clauses then
3 c := a random hard unit clause;
4 satisfy c and SIMPLIFY;

5 else if ∃ soft unit clauses then
6 c := a random soft unit clause;
7 satisfy c and SIMPLIFY;

8 else if ∃ hard binary clauses then
9 c := a random hard binary clause;

10 l := a greedily selected unassigned literal in c;
11 satisfy l and SIMPLIFY;

12 else if ∃ soft binary clauses then
13 c := a random soft binary clause;
14 l := a greedily selected unassigned literal in c;
15 satisfy l and SIMPLIFY;

16 else
17 v := a random unassigned variable;
18 assign v a random value and SIMPLIFY;

19 return the resulting complete assignment A;

be satisfied when falling into a feasible local optimum. Each
arm of the bandit model corresponds to a soft clause. Pulling
an arm implies selecting the corresponding soft clause to be
satisfied in the current step. The bandit model maintains an
estimated value V (i) and a selected time t(i) for each arm
(i.e., soft clause) i. We initialize V (i) = 1 and t(i) = 0
for each arm i. The larger the estimated value of an arm,
the more benefits of pulling the arm, i.e., satisfying the soft
clause corresponding to the arm may yield better solutions.

The rest of this subsection first introduces the method of
selecting an arm to be pulled and then the method of updating
the estimated values.

Arm Selection Strategy

BandMaxSAT uses the Upper Confidence Bound
method [Hu et al., 2019] to trade-off between explo-
ration and exploitation and selects the arm to be pulled.
Specifically, the upper confidence bound Ui on the estimated
value Vi of arm i is calculated with the following equation:

Ui = Vi + λ ·

√

ln(N)

t(i) + 1
, (1)

where N indicates the number of times fallen into a feasible
local optimum and λ is the exploration bias parameter.

The procedure of selecting the arm is shown in Algorithm
2. Since our bandit contains a large number of arms (equal
to the number of soft clauses), selecting the best among all
the arms is inefficient. Therefore, BandMaxSAT first applies
(line 3) the sampling strategy to randomly sample ArmNum
(20 by default) candidate arms and then selects the arm
with the highest upper confidence bound among the candi-
dates (lines 4-5). Similar sampling strategies have been used



Algorithm 2: PickArm(ArmNum,N, λ)

Input: Number of sampled arms ArmNum, number
of times to fall into a local optimum N ,
exploration bias parameter λ

Output: The arm selected to be pulled c
1 initialize U∗ := −∞;
2 for i := 1 to ArmNum do
3 j := a random falsified soft clause;
4 calculate Uj according to Eq. 1;
5 if Uj > U∗ then U∗ := Uj , c := j;

6 return c;

in multi-armed bandit problems [Ou et al., 2019] and some
combinatorial optimization problems [Cai, 2015]. Note that
the bandit aims at selecting a soft clause to be satisfied in the
current step. Thus, the arms corresponding to the soft clauses
that are satisfied by the current assignment will not be con-
sidered as candidates. The experimental results show that the
sampling strategy in our bandit model can significantly im-
prove the algorithm’s performance.

Estimated Value Updating Strategy

Since BandMaxSAT pulls an arm of the bandit when it falls
into a feasible local optimum, we apply the cost values of
the feasible local optimal solutions before and after pulling
an arm to calculate the reward of the action (i.e., pulling the
arm). Suppose A′ and A are the last and current feasible local
optimal solutions respectively, and c is the last pulled arm, a
simple reward for pulling c can be set to r = cost(A′) −
cost(A). However, reducing the cost value from 20 to 10 is
much harder and more meaningful than reducing it from 1000
to 990. Thus, the rewards of these two cases should not be the
same. To address this issue, we define the reward as follows:

r(A,A′, A∗) =
cost(A′)− cost(A)

cost(A′)− cost(A∗) + 1
, (2)

where A∗ is the best solution found so far. Suppose in Eq. 2
cost(A′)− cost(A) is constant, then the closer cost(A′) and
cost(A∗), the more rewards the action of pulling the last arm
can yield, which is reasonable and intuitive.

Moreover, since the arms (i.e., soft clauses) are connected
by the variables, we assume that the arms in our bandit model
are not independent of each other. We also believe that the
improvement (or deterioration) of A over A′ may not only be
due to the last action, but also due to earlier actions. Hence,
we apply the delayed reward method [Arya and Yang, 2020]

to update the estimated value of the last d (20 by default)
pulled arms once a reward is obtained. Specifically, suppose
that A′ and A are the last and current feasible local optimal
solutions respectively, A∗ is the best solution found so far,
and {a1, ..., ad} is the set of the latest d pulled arms (ad is the
most recent one). Then, the estimated values of the d arms
are updated as follows:

Vai
= Vai

+ γd−i · r(A,A′, A∗), i ∈ {1, ..., d}, (3)

where γ is the reward discount factor and r(A,A′, A∗) is cal-
culated with Eq. 2.

Algorithm 3: BandMaxSAT

Input: A (W)PMS instance F , cut-off time cutoff,
BMS parameter k, reward delay steps d,
reward discount factor γ, number of sampled
arms ArmNum, exploration bias parameter λ

Output: A feasible assignment A of F , or no feasible
assignment found

1 A := HyDeci(F );
2 A∗ := A, cost(A′) := +∞, N := 0;
3 while running time < cutoff do
4 if A is feasible & cost(A) < cost(A∗) then
5 A∗ := A;

6 if D := {x|score(x) > 0} 6= ∅ then
7 v := a variable in D picked by BMS(k);
8 else
9 update clause weights();

10 if ∃ falsified hard clauses then
11 c := a random falsified hard clause;
12 else
13 update estimated value(A,A′, A∗, d, γ);
14 N := N + 1, A′ := A;
15 c := PickArm(ArmNum,N, λ);
16 t(c) := t(c) + 1;

17 v := the variable with the highest score in c;

18 A := A with v flipped;

19 if A∗ is feasible then return A∗;
20 else return no feasible assignment found;

3.3 Main Process of BandMaxSAT

Finally, we introduce the main process of BandMaxSAT,
which is shown in Algorithm 3. BandMaxSAT first uses Hy-
Deci to generate an initial assignment, and then repeatedly
selects a variable and flips it until the cut-off time is reached.

When local optima are not reached, BandMaxSAT selects
a variable to be flipped using the Best from Multiple Selec-
tions (BMS) strategy [Cai, 2015]. BMS chooses k random
variables (with replacement) and returns one with the highest
score (lines 6-7). When falling into a local optimum, Band-
MaxSAT first updates the dynamic clause weights (by the
update clause weight() function in line 9) according to the
clause weighting scheme in SATLike3.0 [Cai and Lei, 2020],
and then selects the clause to be satisfied in the current step.

If the local optimum is infeasible, BandMaxSAT randomly
selects a falsified hard clause as the clause to be satisfied in
the current step (lines 10-11). If the local optimum is feasible
(lines 12-15), BandMaxSAT first updates the estimated val-
ues of the latest d pulled arms according to Eq. 3, and then
uses the PickArm() function (Algorithm 2) to select the soft
clause to be satisfied in the current step. After determining
the clause c to be satisfied, BandMaxSAT flips the variable
with the highest score in c in the current step (line 16).

4 Experimental Results

We compare BandMaxSAT with the state-of-the-art (W)PMS
local search algorithm, SATLike3.0 [Cai and Lei, 2020], as



well as some of the best state-of-the-art complete solvers
SATLike-c [Lei et al., 2021], Loandra [Berg et al., 2019] and
TT-Open-WBO-Inc [Nadel, 2019]. The experimental re-
sults demonstrate the excellent performance of our proposed
BandMaxSAT algorithm, that significantly improves the best
(W)PMS local search solver. The results also show the effec-
tiveness of each component in BandMaxSAT, including the
HyDeci initialization method, the sampling strategy and the
delayed reward method.

4.1 Experimental Setup

BandMaxSAT is implemented in C++ and compiled by g++.
Our experiments were performed on a server using an In-
tel® Xeon® E5-2650 v3 2.30 GHz 10-core CPU and 256 GB
RAM, running Ubuntu 16.04 Linux operation system. We
tested the algorithms on all the (W)PMS instances from the
incomplete track of last four MaxSAT Evaluations (MSE),
i.e., MSE2018-MSE2021. Note that we denote the bench-
mark that contains all the PMS/WPMS instances from the in-
complete track of MSE2021 as PMS 2021/WPMS 2021, and
so on. Each instance is calculated once by each algorithm
with a time limit of 300 seconds, which is consistent with the
settings in MSEs and [Cai and Lei, 2020]. The best results
in the tables appear in bold. Moreover, we use BandMS as a
short name of BandMaxSAT in the tables.

The parameters in BandMaxSAT include the BMS param-
eter k, the reward delay steps d, the reward discount fac-
tor γ, the number of sampled arms ArmNum, and the ex-
ploration bias parameter λ. We use all the (W)PMS in-
stances from the incomplete track of MSE2017 as the train-
ing set to tune these parameters. The parameter domains of
these parameters are as follows: [10, 50] for k, [1, 50] for d,
[0.5, 1] for γ, [10, 50] for ArmNum, and [0.1, 10] for λ. Fi-
nally, the default settings of these parameters are as follows:
k = 15, d = 20, γ = 0.9, ArmNum = 20, λ = 1. The
code of BandMaxSAT is available at https://github.com/JHL-
HUST/BandMaxSAT/.

4.2 Comparison of BandMaxSAT and SATLike3.0

We first compare BandMaxSAT with the state-
of-the-art (W)PMS local search algorithm, SAT-
Like3.0 [Cai and Lei, 2020], on all the tested instances.
The results are shown in Table 1. Column #inst. indicates
the number of instances in each benchmark. Column #win.
indicates the number of instances in which the algorithm
yields the best solution among all the algorithms in the table.
Column time represents the average running time to yield the
#win. instances.

As shown by the results in Table 1, BandMaxSAT
(BandMS) significantly outperforms SATLike3.0 for both
PMS and WPMS. Specifically, the #win. instances of Band-
MaxSAT is 62-131% greater than those of SATLike3.0 for
WPMS, and 43-103% greater than those of SATLike3.0 for
PMS, indicating a significant improvement.

4.3 Comparison with Complete Solvers

We then combine our BandMaxSAT local search algorithm
with the complete solver TT-Open-WBO-Inc (TT-OWI) as

Benchmark #inst.
BandMS SATLike3.0

#win. time #win. time

WPMS 2018 172 118 114.76 51 73.68
WPMS 2019 297 210 108.47 103 75.50
WPMS 2020 253 170 137.45 88 81.81
WPMS 2021 151 89 145.87 55 89.70
PMS 2018 153 110 99.15 54 80.39
PMS 2019 299 204 67.93 143 53.67
PMS 2020 262 174 73.91 119 63.18
PMS 2021 155 112 68.66 60 51.77

Table 1: Comparison of BandMS and SATLike3.0.

Benchmark BandMS-c SATLike-c Loandra TT-OWI

WPMS 2018 0.9041 0.8901 0.8820 0.9026
WPMS 2019 0.8974 0.8819 0.8474 0.9022
WPMS 2020 0.8707 0.8613 0.8043 0.8655
WPMS 2021 0.7844 0.7809 0.7833 0.7729
PMS 2018 0.8537 0.8440 0.7811 0.8412
PMS 2019 0.8793 0.8745 0.7818 0.8713
PMS 2020 0.8619 0.8511 0.8216 0.8586
PMS 2021 0.8592 0.8538 0.7714 0.8436

Table 2: Comparison of BandMS-c and the state-of-the-art complete
(W)PMS solvers, SATLike-c, Loandra, TT-Open-WBO-Inc. The re-
sults are expressed by the scoring function used in MSE2021.

SATLike-c does (which combines SATLike3.0 with TT-
OWI), and denote the resulting solver as BandMaxSAT-c
(BandMS-c). We further compare BandMaxSAT-c with some
of the best state-of-the-art complete (W)PMS solvers that
showed excellent performance in recent MSEs, including
SATLike-c, Loandra and TT-OWI (all of them are down-
loaded from MSE2021). We apply the scoring function
used in MSE2021 to evaluate the performance of these four
solvers, since the scoring function is suitable for evaluat-
ing and comparing multiple solvers. The scoring function
actually indicates how close the solutions are to the best-
known solutions. Specifically, suppose CBKS is the cost of
the best-known solution of an instance which is recorded in
MSEs, Ci is the cost of the solution found by the i-th solver
(i ∈ {1, 2, 3, 4}) in our experiments, the score of solver i for

this instance is
min(CBKS ,C1,C2,C3,C4)+1

Ci+1 ∈ [0, 1] (resp. 0)

if the solution found by solver i is feasible (resp. infeasible).
Finally, the score of a solver for a benchmark is the average
value of the scores for all the instances in the benchmark.

The comparison results of these four solvers are shown in
Table 2. BandMaxSAT-c yields the highest score on all the
benchmarks except WPMS 2019, demonstrating the excel-
lent performance of our proposed method.

4.4 Ablation Study

Finally, we perform ablation studies to analyze the ef-
fect of each component in BandMaxSAT. We first com-
pare BandMaxSAT with two variants to evaluate the sam-
pling strategy in the bandit model. The first one is
BandMaxSATsample-1 (Sample-1 in brief), a variant of Band-
MaxSAT that sets the parameter ArmNum to 1, which actu-
ally replaces the whole bandit model in BandMaxSAT with
the simple random strategy used in Dist [Cai et al., 2014],
CCEHC [Luo et al., 2017], SATLike [Lei and Cai, 2018]



Benchmark #inst.
BandMS Sample-1 Sample-all

#win. time #win. time #win. time

WPMS 2018 172 100 102.04 62 66.47 65 74.15
WPMS 2019 297 188 100.35 117 73.21 118 78.91
WPMS 2020 253 160 127.43 96 81.86 100 94.54
WPMS 2021 151 80 134.94 53 114.89 46 90.91
PMS 2018 153 102 87.75 74 59.45 67 65.78
PMS 2019 299 191 65.35 164 53.26 130 59.26
PMS 2020 262 168 67.38 139 54.28 111 66.21
PMS 2021 155 109 65.61 83 36.24 72 49.41

Table 3: Comparison with variants Sample-1 and Sample-all.

Benchmark #inst.
BandMS BandMSno-delay

#win. time #win. time

WPMS 2018 172 117 108.96 85 64.60
WPMS 2019 297 187 106.78 165 87.30
WPMS 2020 253 161 130.91 133 91.50
WPMS 2021 151 89 140.16 64 112.62
PMS 2018 153 113 91.99 97 57.00
PMS 2019 299 202 66.14 191 58.40
PMS 2020 262 181 71.78 158 43.55
PMS 2021 155 108 60.98 97 48.91

Table 4: Comparison with variant BandMSno-binary.

and SATLike3.0 [Cai and Lei, 2020]. The second one is
BandMaxSATsample-all (Sample-all in brief), a variant of
BandMaxSAT that removes the sampling strategy in the ban-
dit model, i.e., selecting the arm to be pulled by traversing all
the available arms. The results are shown in Table 3.

The results in Table 3 show that our bandit model signifi-
cantly outperforms the random strategy that is widely used in
recent (W)PMS local search algorithms, and can greatly im-
prove the performance. Moreover, the sampling strategy used
in our bandit model is effective and necessary.

We then compare BandMaxSAT with its another variant
BandMaxSATno-delay, that sets the parameter d to 1, to eval-
uate the delayed reward method. The results are shown in
Table 4. The results indicate that the delayed reward method
fits well with the problems, and the method can help Band-
MaxSAT evaluate the quality of the arms better.

We further do two groups of experiments to evaluate the
proposed HyDeci initialization method. The first group com-
pares BandMaxSAT with its variant BandMaxSATno-binary,
that does not prioritize binary clauses in HyDeci (i.e., re-
move lines 8-15 in Algorithm 1). The second group compares
two variants of BandMaxSAT. They are, BandMaxSATfast,
a variant of BandMaxSAT that outputs the first feasible so-
lution it found (within a time limit of 300 seconds), and
BandMaxSATno-binary-fast, a variant of BandMaxSATno-binary

that outputs the first feasible solution it found. We actually
use BandMaxSATfast and BandMaxSATno-binary-fast to roughly
evaluate the quality of the initial assignments. The results of
these two groups are shown in Tables 5 and 6, respectively.

From the results in Tables 5 and 6 we can see that:

(1) BandMaxSATfast outperforms BandMaxSATno-binary-fast

on all the benchmarks except WPMS 2019, indicating that
our method that prioritizes both unit and binary clauses can
yield better initial assignments than the method that only pri-
oritizes unit clauses.

Benchmark #inst.
BandMS BandMSno-binary

#win. time #win. time

WPMS 2018 172 105 110.11 86 94.17
WPMS 2019 297 190 104.24 165 93.96
WPMS 2020 253 161 129.54 135 103.39
WPMS 2021 151 89 146.36 76 119.98
PMS 2018 153 100 107.80 98 79.07
PMS 2019 299 203 76.28 201 63.91
PMS 2020 262 178 80.20 176 63.13
PMS 2021 155 102 72.00 92 42.79

Table 5: Comparison with variant BandMSno-binary.

Benchmark #inst.
BandMSfast BandMSno-binary-fast

#win. time #win. time

WPMS 2018 172 91 9.70 89 3.15
WPMS 2019 297 162 10.80 165 7.31
WPMS 2020 253 150 13.18 136 11.36
WPMS 2021 151 90 18.49 69 15.62
PMS 2018 153 94 6.15 90 4.64
PMS 2019 299 188 5.06 168 4.72
PMS 2020 262 166 4.62 147 3.75
PMS 2021 155 89 7.17 79 5.13

Table 6: Comparison with BandMSfast and BandMSno-binary-fast.

(2) BandMaxSAT outperforms BandMaxSATno-binary for
WPMS, indicating that our HyDeci method is effective and
can improve the BandMaxSAT for WPMS. For PMS, These
two algorithms have close performance, indicating that the
local search process in BandMaxSAT is robust for PMS, as
BandMaxSATno-binary can obtain PMS solutions with similar
quality to BandMaxSAT, with worse initial assignments.

5 Conclusion

This paper proposes a multi-armed bandit local search
solver called BandMaxSAT for Partial MaxSAT (PMS) and
Weighted PMS (WPMS). The proposed bandit model can
help the local search learn to select an appropriate soft clause
to be satisfied in the current step when the algorithm falls
into a feasible local optimum. We further apply the sam-
pling strategy and the delayed reward method to improve
our bandit model. As a result, the bandit model fits well
with (W)PMS. Moreover, we propose an effective initializa-
tion method, called HyDeci, that prioritizes both unit and bi-
nary clauses when generating the initial assignments. Hy-
Deci can improve BandMaxSAT by providing high-quality
initial assignments, and could be useful to improve other lo-
cal search MaxSAT solvers. Extensive experiments on all
the (W)PMS instances from the incomplete tracks of the last
four MSEs demonstrate that BandMaxSAT significantly out-
performs the state-of-the-art local search (W)PMS algorithm
SATLike3.0. Moreover, by combining BandMaxSAT with
the complete solver TT-Open-WBO-Inc, the resulting solver
BandMaxSAT-c outperforms the complete solvers SATLike-
c, Loandra, and TT-Open-WBO-Inc.

The key issue in designing a local search algorithm is how
to escape from local optima to find new high-quality search
directions. In future work, we plan to generalize our ban-
dit model to improve other local search algorithms for vari-
ous NP-hard problems that need to select one among multiple



candidates to escape from local optima.
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