
HAL Id: hal-04525626
https://u-picardie.hal.science/hal-04525626v1

Submitted on 28 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Strengthened Branch and Bound Algorithm for the
Maximum Common (Connected) Subgraph Problem

Jianrong Zhou, Kun He, Jiongzhi Zheng, Chu-Min Li, Yanli Liu

To cite this version:
Jianrong Zhou, Kun He, Jiongzhi Zheng, Chu-Min Li, Yanli Liu. A Strengthened Branch and Bound
Algorithm for the Maximum Common (Connected) Subgraph Problem. IJCAI-2022, 2022, Vienna,
Austria. pp.1908-1914. �hal-04525626�

https://u-picardie.hal.science/hal-04525626v1
https://hal.archives-ouvertes.fr

A Strengthened Branch and Bound Algorithm
for the Maximum Common (Connected) Subgraph Problem
Jianrong Zhou1, Kun He†1, Jiongzhi Zheng1, Chu-Min Li2, Yanli Liu3

1School of Computer Science and Technology, Huazhong University of Science and Technology
2MIS, University of Picardie Jules Verne, France

3WuHan University of Science and Technology, China
{jrzhou,jzzheng,brooklet60}@hust.edu.cn

†Corresponding author.

Abstract

We propose a new and strengthened Branch-and-
Bound (BnB) algorithm for the maximum com-
mon (connected) induced subgraph problem based
on two new operators, Long-Short Memory (LSM)
and Leaf vertex Union Match (LUM). Given two
graphs for which we search for the maximum com-
mon (connected) induced subgraph, the first oper-
ator of LSM maintains a score for the branching
node using the short-term reward of each vertex of
the first graph and the long-term reward of each ver-
tex pair of the two graphs. In this way, the BnB
process learns to reduce the search tree size sig-
nificantly and improve the algorithm performance.
The second operator of LUM further improves the
performance by simultaneously matching the leaf
vertices connected to the current matched vertices,
and allows the algorithm to match multiple ver-
tex pairs without affecting the solution optimality.
We incorporate the two operators into the state-
of-the-art BnB algorithm McSplit, and denote the
resulting algorithm as McSplit+LL. Experiments
show that McSplit+LL outperforms McSplit+RL, a
more recent variant of McSplit using reinforcement
learning that is superior than McSplit.

1 Introduction
Graphs are important data structures that can be used to
model many real-world problems. One of the most ba-
sic graph problems is to measure the similarity of graphs.
Given two graphs G0 and G1, the Maximum Common in-
duced Subgraph (MCS) aims to find an induced subgraph
G′

0 in G0 and an induced subgraph G′
1 in G1 such that

G′
0 and G′

1 are isomorphic and the number of vertices of
G′

0 and G′
1 is maximized. The vertices of G′

0 are said to
be matched with the vertices of G′

1. MCS has a variant
called the Maximum Common Connected induced Subgraph
(MCCS), which further requires the induced subgraph to be
connected. These problems are widely applied in various do-
mains, such as biochemistry [Giugno et al., 2013; Bonnici
et al., 2013], cheminformatics [Raymond and Willett, 2002;

Englert and Kovács, 2015; Duesbury et al., 2017], compil-
ers [Blindell et al., 2015], model checking [Sevegnani and
Calder, 2015], molecular science [Ehrlich and Rarey, 2011],
pattern recognition [Solnon et al., 2015], malware detec-
tion [Bruschi et al., 2006; Park et al., 2013], video and im-
age analysis [Shearer et al., 2001; Jiang and Ngo, 2003;
Hati et al., 2016], etc.

As an NP-hard problem, MCS is computationally very
challenging. Many approaches have been proposed for solv-
ing MCS and its related problems, which could be mainly
divided into two categories: exact algorithms and inexact al-
gorithms. An exact algorithm guarantees to obtain an optimal
solution but runs in exponential time in the worst case. It aims
to efficiently enumerate the whole search space or reduce
the search space without affecting the solution’s optimal-
ity. The approaches for exact algorithms include Linear Pro-
gramming (LP) [Bahiense et al., 2012], Branch-and-Bound
(BnB) [Raymond and Willett, 2002; McCreesh et al., 2017;
Liu et al., 2020], etc. An inexact algorithm aims to find
a near-optimal solution within reasonable computational re-
sources (e.g., time and memory). The approaches for in-
exact algorithms include heuristics [Bonnici et al., 2013;
Englert and Kovács, 2015; Duesbury et al., 2017] and meta-
heuristics [Choi et al., 2012]. Recently, machine learn-
ing [Shearer et al., 2001] and deep learning [Zanfir and Smin-
chisescu, 2018; Bai et al., 2021] techniques are also adopted
for solving MCS.

The BnB algorithms have exhibited high performance for
MCS problems. Given a vertex p in G0, McSplit [McCreesh
et al., 2017], one of the state-of-the-art algorithms for MCS,
proposes a partition method to efficiently filter the set of can-
didate vertices of G1 that can be matched with q, and uses
a novel compact candidate set representation to dramatically
reduce the memory and computational requirements during
the search. McSplit+RL [Liu et al., 2020] further improves
McSplit using a new branching method based on reinforce-
ment learning.

In this work, we propose two new operators to speed up the
BnB process, namely Long-Short Memory (LSM) and Leaf
vertex Union Match (LUM). In a BnB process for MCS, the
branching consists in first selecting a vertex p from the first
graph G0, and then matching each candidate vertex q of G1

in turn. LSM maintains a score for each p using the short-

ar
X

iv
:2

20
1.

06
25

2v
1

 [
cs

.D
S]

 1
7

Ja
n

20
22

term reward, and the long-term reward of each branching pair
〈p, q〉. In this way, the search tree size could be reduced.
LUM improves the efficiency in a different way. When a pair
of vertices are matched for branching, LUM also matches the
leaf vertices connected to the current matched vertices, allow-
ing to reduce the search space while keeping the solution’s
optimality.

We implement our two operators on top of McSplit, and
design a new and strengthened algorithm called McSplit+LL.
We extensively evaluate McSplit+LL on 25,552 instances
from diverse applications as McSplit+RL does. Results show
that the proposed McSplit+LL clearly outperforms McSplit
and McSplit+RL, which are already highly efficient. We also
carry out an empirical analysis to give insight on why and
how our two proposed operators are effective, suggesting that
both of them can reduce the search tree size, so as to improve
the efficiency. Besides, the second operator of LUM is gen-
eral and could be useful for other graph search problems.

2 Problem Definition
Consider a simple (undirected or directed , unlabelled) graph
G = (V,E), where V and E represent the vertex set and the
edge set, respectively. Two vertices u, v are called adjacent
if (u, v) ∈ E, and the degree of a vertex u is the number of
its adjacent vertices. An induced subgraph G′ = (V ′, E′)
of G consists of a vertex subset V ′ ⊆ V and the edges in
E′ = {(u, v) | ∀u, v ∈ V ′, (u, v) ∈ E}.

Given two graphs G0 and G1, if there is an induced sub-
graph G′

0 of G0 and there exists a bijection φ : V ′
0 →

V ′
1 , Φ(G′

0) (Φ(G) donates a graph that mapping all ver-
tices in G by φ) is also an induced subgraph of G1, then
we call 〈G′

0,Φ(G′
0)〉 is the common induced subgraph of

〈G0, G1〉. Let V ′ = {v1, v2, ..., v|V ′|}, the common in-
duced subgraph is also represented as a list of vertex pairs
{〈v1, φ(v1)〉, 〈v2, φ(v2)〉, ..., 〈v|V ′|, φ(v|V ′|)〉}

The Maximum Common induced Subgraph (MCS) prob-
lem aims to find the common induced subgraph such that the
number of its vertices is maximized. In other words, the two
induced subgraphs are isomorphic with the maximum vertex
cardinality. There is a variant problem of MCS, the Maxi-
mum Common Connected induced Subgraph (MCCS) prob-
lem, which requires the induced subgraph is connected.

3 Branch and Bound for MCS
This section presents two of the best-performing BnB algo-
rithms for MCS and MCCS, which are McSplit [McCreesh
et al., 2017] and McSplit+RL [Liu et al., 2020]. To simplify
the algorithm description, we initially assume that the graphs
are undirected, as the method is easy to be adapted to handle
various extensions of the problem [McCreesh et al., 2017].

At each search node, the BnB algorithm first estimates an
upper bound of the best solution that can be found in the cur-
rent subtree. If the upper bound is not larger than the size of
the current best solution, the algorithm prunes this branch and
backtracks, because any better solution cannot be found un-
der this search node. Otherwise, it selects a new vertex pair
to match, updates the current solution and then runs recur-
sively. There are three key issues for implementing the BnB

Algorithm 1 MCS(D, α, β, γ, Scur, Sbest)
Input: A bidomain list D; three heuristic functions α, β and
γ for selecting the bidomain, the first matched vertex, and the
second matched vertex, respectively; the current maintained
solution Scur; the best solution found so far Sbest.
Output: The optimal solution Sbest.

1: UB ← overEstimate(D) + |Scur|
2: if UB ≤ |Sbest| then
3: return Sbest

4: end if
5: 〈Vl, Vr〉 ← a bidomain by the heuristic α(D)
6: p← a vertex obtained by the heuristic β(Vl)
7: m← |Vr|
8: for i from 1 to m do
9: q← a vertex obtained by the heuristic γ(Vr)

10: Vr ← Vr \ {q}
11: S′

cur ← Scur ∪ {〈p, q〉}
12: if |S′

cur| > |Sbest| then
13: Sbest← S′

cur
14: end if
15: D′ ← a new bidomain list obtained by dividing D
16: Sbest←MCS(D′, α, β, γ, S′

cur, Sbest)
17: end for
18: D′ ← a new bidomain list obtained by removing p from
D

19: Sbest←MCS(D′, α, β, γ, Scur, Sbest)
20: return Sbest

algorithm: 1) estimate the upper bound, 2) design the branch-
ing strategy, 3) maintain candidate vertices of the two graphs.
To address these issues, McSplit and McSplit+RL proposed
label class and a learning based scoring mechanism for the
branching nodes, respectively.

3.1 The BnB Framework for MCS Problems
[McCreesh et al., 2017] proposes a BnB framework for MCS
problems, that the current best-performing algorithms Mc-
Split and McSplit+RL both adopt. For two input graphs G0

and G1, the bidomain structure consists of two vertex sets
〈Vl, Vr〉, where Vl and Vr are subsets of V (G0) and V (G1),
respectively. McSplit assigns a label to each of the bidomains.
The label indicates that each vertex in the bidomain has the
same connectivity to the matched vertices, and is represented
by a “01”-string. Therefore the two graphs can be represented
as a list of bidomains D during the search and any vertex pair
selected from each bidomain is legal to match. Whenever a
vertex pair 〈p, q〉 matches, each bidomain 〈Vl, Vr〉 will be di-
vided into two new bidomains 〈V 0

l , V
0
r 〉 and 〈V 1

l , V
1
r 〉, where

the superscript “0” and “1” indicate the connectivity of the
matched vertex pair 〈p, q〉. See Figure 1 for an illustrative
example.

Obviously, a bidomain 〈Vl, Vr〉 can provide at most
min(|Vl|, |Vr|) matched vertex pairs. Therefore, the algo-
rithm estimates the upper bound of the bidomain list D by
the following equation:

overEstimate(D) =
∑

〈Vl,Vr〉∈D

min(|Vl|, |Vr|) (1)

Figure 1: An example to illustrate the concepts of bidomain and
label class for MCS. There are three matched vertex pairs 〈1, a〉,
〈2, b〉 and 〈3, c〉. According to the definitions of bidomain and label
class, the remaining vertices are divided into three valid bidomains
D(“000”) = 〈{6}, {f}〉, D(“100”) = 〈{7, 8}, {d}〉 and D(“110”)
= 〈{4}, {e}〉, where “0” indicates that the vertex is not adjacent
to the corresponding matched vertex and “1” otherwise. Note that
D(“011”) and D(“111”) are invalid bidomains, as they cannot pro-
vide any matched vertex pair, and will be removed in the bidomain
dividing process.

Then, we introduce the flow of BnB algorithm based on
the depth-first search for MCS, as depicted in Algorithm 1.
The call of MCS({〈V (G0), V (G1)〉}, α, β, γ, ∅, ∅) returns a
maximum common induced subgraph ofG0 andG1 where α,
β and γ are the heuristics. At each search node, the algorithm
calculates the upper bound assisted by Eq. 1 and uses the up-
per bound to determine whether it can find a better solution
from this search node. If there exists no better solution from
this node, the algorithm prunes and backtracks. Then it se-
lects a bidomain 〈Vl, Vr〉 from the current bidomain list D by
heuristic α and picks a vertex p from Vl by heuristic γ. The
algorithm enumerates all the vertices in Vr to match with the
vertex p where the order of enumeration is decided by heuris-
tic γ. When a vertex pair 〈p, q〉 is matched, the algorithm
appends the matched pair to the current solution, updates the
best solution, and obtains a new bidomain list D′ by dividing
the current bidomain list D by 〈p, q〉. Afterwards, the algo-
rithm runs recursively with the new bidomain list D′. After
enumerating all the possible matched vertex pairs of p, the
rest of the configuration is that vertex p does not appear in the
matched vertex pair list, thus the algorithm removes vertex p
from the current bidomain list and runs recursively.

3.2 McSplit and McSplit+RL
There are three heuristics α, β and γ that represent the strat-
egy of selecting the bidomain, selecting the first matched ver-
tex and the order of enumerating the second matched vertex,
respectively. These heuristics are the essential components in
the BnB framework, that lead to different BnB algorithms.

McSplit [McCreesh et al., 2017] implements the three
heuristics as follows:

• α: McSplit defines the value of max(|Vl|, |Vr|) as the
size of the bidomain. It selects a bidomain with the
smallest size from the bidomain list and uses the largest
vertex degree in Vl to break ties.

• β: Picks the largest degree vertex from Vl as the first
matched vertex.

• γ: Enumerates the second matched vertex in Vr in de-
creasing order of vertex degree.

McSplit+RL [Liu et al., 2020] introduces a learning based
branching heuristic, so as to choose a branching pair with the
largest bound reduction and reach the pruning condition as
early as possible. McSplit+RL regards the BnB algorithm as
an agent and a vertex pair selection as an action. When a
vertex pair 〈p, q〉 is matched, and the current bidomain list
D is divided into D′, McSplit+RL uses the estimated bound
reduction of the bidomain list as the reward r(p, q) of taking
action 〈p, q〉.

r(p, q) = overEstimate(D)− overEstimate(D′). (2)

McSplit+RL maintains two score lists S0(·) and S1(·) for
each vertex in G0 and G1, records the accumulated rewards
of each vertex. Specifically, update the score lists as follows:

S0(p)← S0(p) + r(p, q)

S1(q)← S1(q) + r(p, q)
(3)

Then McSplit+RL replaces heuristics β and γ based on the
two score lists as follows:

• β: Picks a vertex p with the largest score S0(p) from Vl
as the first matched vertex.

• γ: Enumerates the second matched vertex q in Vr in de-
creasing order of the S1(q) score.

4 The Proposed McSplit+LL Algorithm
We first analyze the limits of the existing branching heuris-
tic, and then we propose a new and strengthened branching
heuristic called Long-Short Memory (LSM). Furthermore,
we propose a Leaf vertex Union Match (LUM) method for
the vertex-vertex mapping based algorithm. We implement
both LSM and LUM on top of McSplit, and call the resulting
new algorithm McSplit+LL.

4.1 Further Discussion on McSplit(+RL)
In McSplit, the selecting vertex pair heuristics β and γ are
straightforward and not adaptive, hence its branching strategy
may not be the best choice to minimize the search tree size.

In McSplit+RL, the main idea for the branching is to use
the bound reduction to evaluate each vertex.Then it selects
the vertex with the largest evaluation score to match, aiming
to reduce the bound as much as possible and quickly reach
the pruning condition. The score is accumulated during the
entire BnB algorithm, i.e., it is the summation of all the his-
torical evaluation values. However, with the number of recur-
sion and backtracking increases, the situation of the current
solution and unmatched vertices (the bidomains) in the two
graphs have changed drastically. Accumulating the scores
evenly causes a bias caused by a large proportion of historical
evaluation values when the current configuration differs from
the historical configuration. Hence, we need a mechanism
that can reasonably eliminate the influence of the historical
evaluations.

4.2 Long-Short Memory Branching Heuristic
To overcome the limits of existing BnB methods, we apply
the reinforcement learning method in McSplit+RL to eval-
uate the benefit of matching each vertex on the reduction of
the search tree size, and further propose a mechanism to elim-
inate the historical evaluations by decaying part of the evalu-
ation values when they reach a predetermined upper limit.

Our method maintains a score list S0(·) as McSplit+RL
does, and further maintains a score table St(p, q) of each ver-
tex pair 〈p, q〉 simultaneously. The initial value of the score
table St(p, q) is set to 0 for each vertex pair 〈p, q〉. When-
ever action 〈p, q〉 is performed, St(p, q) will be updated by
the following formula:

St(p, q) = St(p, q) + r(p, q). (4)
Our method replaces the γ heuristic in McSplit+RL with:
• γ: Enumerates the second matched vertex q in Vr in de-

creasing order of the St(p, q) score.
Before introducing our decaying mechanism, we first pro-

vide insights on the scoring mechanism. Firstly, score S0(p)
is accumulated by reward r(p, q) where vertex p and q are in
the same bidomain. The bound reduction is seriously influ-
enced by matching to which vertex q, and the bidomains are
changed frequently that means the vertices matched to p are
very dynamic. It will lead the evaluation score to be outdated
quickly. Thus, using the score S0(p) to evaluate the bound
reduction of taking action 〈p, q〉 is very inaccurate. Secondly,
the evaluation score on vertex pair St(p, q) records the reward
r(p, q) properly, which is more accurate than S0(p). So the
historical rewards accumulated by St(p, q) have significant
reference value. So we propose a LSM strategy to make the
score list S0(·) focus on the short-term reward, and the score
table St(·, ·) focus on the long-term reward.

In LSM, a short-term threshold value Ts (105 by default)
and a long-term threshold value Tl (109 by default) are used
to implement our mechanism. At each search node, when
the algorithm is branching and the score S0(p) and St(p, q)
are updated, if score S0(p) is greater than Ts, then all the
scores in the score list S0(·) decay to a half. And we
regard the score table St(·, ·) as |V (G0)| score lists, i.e.,
St(·, ·) = St(v1, ·), St(v2, ·), ..., St(v|V (G0)|, ·). If score
St(p, q) is greater than Tl, then all the scores in the score
list St(p, ·) decay to a half. The decaying operation in each
score list of the score table is independent.

4.3 Leaf Vertex Union Match
We first provide a definition of the leaf vertex of an undirected
graph. A vertex is regarded as a leaf if it is adjacent to exactly
one vertex in the graph and the leaves of vertex u indicate the
leaves adjacent to u. Then, we provide the main theory to
support our LUM strategy.
Theorem 1. In the BnB framework, when a vertex pair 〈p, q〉
is matched, we can match as many leaf pairs as possible from
the unmatched leaves of vertex p and q without affecting the
solution’s optimality.

Proof. Assume the current solution has k matched vertex
pairs and the i-th pair is 〈p, q〉. According to the label class

Figure 2: An example to illustrate the leaf attribute of LUM for a
general situation. It shows two directed and labelling graphs G0 and
G1 (only vertices are labelled, thus we omit the edge label in the
leaf attribute), each leaf attribute is given below the leaf. The leaf
attribute (A,±) represents the vertex label and the direction of arc
connected to the leaf respectively. Sign + means the leaf is the head
of the arc and sign − means the leaf is the tail of the arc. There are
at most three leaf pairs that can be provided in this example.

definition in Section 3.1, the labels of the unmatched leaves
of p and q are all the same as “0...010...0” which has exactly
one “1” in the i-th position, because the leaves are only ad-
jacent to the vertex p and q respectively. Thus, these leaves
are always partitioned in the same bidomain. It guarantees
that no matter what the matching configuration of other ver-
tices is, the leaves of p and leaves of q are always legal to
match as long as p and q match together. If arbitrary pair
of leaves are matched, all the remaining unmatched vertices
are not adjacent to both matched leaves. Matching any leaf
pair does not divide a new bidomain from the current bido-
main list. Therefore, such an operation does not affect the
solution’s optimality of the BnB algorithm for MCS.

Our LUM strategy can be extended to general graph match-
ing problems. Consider a directed and labelling graph, where
both vertices and arcs are labelled. Let Lv = {a1, a2, a3, ...}
and Le = {b1, b2, b3, ...} represent the vertex label set and
the arc label set, respectively. We give each leaf an attribute
(ai,±bj) where ai is the label of vertex, bj is the label of arc
connected to the leaf and the sign represents the direction of
arc (+ means leaf is head, − means leaf is tail). We partition
the leaves into different groups according to the attributes.
Leaves in the corresponding group can be matched, therefore
it can match as many leaf pairs as possible in each group. We
also provide an example as shown in Figure 2. Note that the
leaf grouping is independent of the bidomain dividing.

5 Experiments
We compare our proposed McSplit+LL algorithm with Mc-
Split+RL [Liu et al., 2020], which is the state-of-the-art BnB
exact algorithm for MCS. We tested the algorithms on both
the MCS and MCCS problems. The experimental results
show that McSplit+LL outperforms McSplit+RL for solv-
ing these problems. Further ablation studies show the effec-
tiveness of our proposed methods, including LSM branching
heuristic and LUM strategy.

5.1 Experimental Setup
Experiments were performed on a server with Intel® Xeon®
E5-2650 v3 CPU and 256GBytes RAM. The algorithms were

Figure 3: Cactus plots of McSplit+RL and McSplit+LL on the 2,309
moderate MCS instances, which solve 2,013 and 2,208 out of the
instances respectively.

Figure 5: Cactus plots of McSplit+RL, McSplit+SM and Mc-
Split+LSM on the 2,309 moderate MCS instances, which solve
2,013, 2,079 and 2,179 out of the instances respectively.

implemented in C++ and compiled using g++ 5.4.0. The cut-
off time is set to 1800 seconds for each instance, which is the
same as in [Liu et al., 2020].

There are two parameters, Ts and Tl for the LSM branching
heuristic. We sample some instances solved between 10 to 30
minutes and the parameter tuning domain is set to 10k, k ∈
[2, 9]. Finally, the default setting of two parameters Ts and Tl
are 105 and 109, respectively.

5.2 Benchmark Datasets
The benchmark datasets1 include 25,552 instances that are
divided into several compositions:

• Biochemical reaction [Gay et al., 2014] includes 136
directed bipartite graphs (with vertices between 9 and
386), and describe biochemical reaction networks orig-
inated from the biomodels.net. It provides 9,180 in-
stances obtained by pairing each of the graphs.

• Images-PR15 [Solnon et al., 2015] includes a target
graph (with 4,838 vertices) and 24 pattern graphs (with

1Available at http://liris.cnrs.fr/csolnon/SIP.html

Figure 4: Cactus plots of McSplit+RL and McSplit+LL on the 1,166
moderate MCCS instances, which solve 1,064 and 1,158 out of the
instances respectively.

Figure 6: Cactus plots of McSplit+RL and McSplit+LUM on the
2,309 moderate MCS instances, which solve 2,013 and 2,059 out of
the instances respectively.

vertices between 4 and 170), which are generated from
segmented images. It provides 24 instances.

• Images-CVIU11 [Damiand et al., 2011] includes 43 pat-
tern graphs (with vertices between 22 and 151), and 146
target graphs (with vertices between 1,072 and 5,972),
which are generated from segmented images. It provides
6,278 instances.

• Meshes-CVIU11 [Damiand et al., 2011] includes 6 pat-
tern graphs (with vertices between 40 and 199), and 503
target graphs (with vertices between 208 and 5,873),
which are generated from meshes modelling 3D objects.
It provides 3,018 instances.

• Scalefree [Zampelli et al., 2010; Solnon, 2010] includes
100 instances. Each instance is composed of a target
graph (with vertices between 200 and 1,000) and a pat-
tern graph (contains 90% of the vertices of the target
graph). These instances are randomly generated from
scale-free networks.

• Si [Zampelli et al., 2010; Solnon, 2010] includes 1,170
instances. Each instance is composed of a target graph

(with vertices between 200 and 1,296) and a pattern
graph (with vertices between 20% and 60% of the tar-
get graph). Among these instances, there are bounded
valence graphs and modified bounded valence graphs,
4D meshes, and randomly generated graphs.

• LV [McCreesh et al., 2017] includes 49 pattern graphs
and 48 target graphs (with vertices both between 10 and
128). It provides 2,352 instances.

• LargerLV [McCreesh et al., 2017] includes 49 pattern
graphs (with vertices between 10 and 128) and 70 target
graphs (with vertices between 138 and 6,671). It pro-
vides 3,430 instances.

5.3 Comparisons on MCS
The McSplit algorithm is efficient enough and there are lots
of small scale instances in the benchmark datasets that can be
solved in several seconds. The results on these small scale
instances cannot really show the gap of differences on the al-
gorithm efficiency. Hence, we group the 7,226 small scale
instances which could be solved by all the tested algorithms
within 10 seconds into the easy set, and only provide the av-
erage solving time. We also exclude another set of tough in-
stances that cannot be solved by any algorithm within the time
limit. Thereafter, we have 2,309 remaining instances that can
be solved by at least one of the tested MCS algorithms within
the time limit. We denote these medium hard instances as
the moderate instances, and will use them for detailed perfor-
mance comparison.

We compare McSplit+RL with McSplit+LL as illustrated
in Figure 3. Each point (t, n) in a curve of Figure 3 indicates
the algorithm solves (finds the optimal solution, with or with-
out certifying) n instances in t seconds, the same in Figures 4,
Figure 5, and Figure 6. McSplit+RL solves 2,013 moderate
instances while McSplit+LL could solve 2,208 moderate in-
stances. Besides, the average runtimes of McSplit+RL and
McSplit+LL on the easy set of instances are 0.83s and 0.51s,
respectively. In other words, McSplit+LL solves 9.69% more
moderate instances than McSplit+RL, and McSplit+LL is
also faster than McSplit+RL in solving the easy instances.
The results demonstrate that McSplit+LL outperforms Mc-
Split+RL significantly on the MCS problem.

5.4 Comparisons on MCCS
We also apply our McSplit+LL algorithm to solve the MCCS
problem. As the basic version of McSplit does not support
solving MCCS on the directed graph, we exclude the directed
graph instances (9,180 Biochemical reaction instances) from
the datasets.

Using the same datasets processing as in MCS, we first
exclude the 2,110 easy instances and the tough instances,
and use the remaining 1,166 moderate instances as bench-
marks for detailed comparison. The results are illustrated
in Figure 4. McSplit+RL solves 1,064 moderate instances,
while McSplit+LL solves 1,158 moderate instances (8.83%
more than McSplit+RL). Also, the average runtimes of Mc-
Split+RL and McSplit+LL on the easy instances are 2.03s
and 1.36s, respectively. The results demonstrate that Mc-
Split+LL also outperforms McSplit+RL significantly on the
MCCS problem.

5.5 Ablation Study
In this subsection, we do ablation studies to analyze the ef-
fectiveness of the two proposed operators, LSM and LUM.

We first compare three algorithms, McSplit+RL, Mc-
Split+SM and McSplit+LSM, on the MCS instances and the
results are illustrated in Figure 5. McSplit+SM is a variant of
McSplit+RL that applies our decaying operation on the score
lists S0(·) and S1(·) with the short-term threshold value Ts,
called Short Memory (SM). McSplit+LSM is a variant that
applies LSM on the top of McSplit.

McSplit+SM solves 2,079 moderate instances and Mc-
Split+LSM solves 2,179 moderate instances which are 3.28%
and 8.25% more than McSplit+RL. Besides, the average run-
times of McSplit+SM and McSplit+LSM on the easy in-
stances are 0.82s and 0.53s, respectively. The results show
that McSplit+RL can be improved by applying our proposed
decaying mechanism, and using LSM instead of SM yields
better performance.

Then, we analyze the effectiveness of LUM. We imple-
ment it on top of McSplit+RL and obtain a variant algorithm
called McSplit+LUM. We compare McSplit+LUM with Mc-
Split+RL on the MCS instances and the results are illustrated
in Figure 6. It solves 2,059 moderate instances which is
2.29% better than McSplit+RL. Besides, the average runtime
of McSplit+LUM on the easy set of instances was 0.81s.

The ablation studies for both McSplit+LSM and Mc-
Split+LUM demonstrate that our proposed operators could
improve the performance and efficiency of the BnB algorithm
for both MCS and MCCS problems.

6 Conclusion
In this work, we address the Maximum Common induced
Subgraph (MCS) and Maximum Common Connected in-
duced Subgraph (MCCS) problems, and we propose an effec-
tive Branch-and-Bound (BnB) algorithm called McSplit+LL
for these two problems. McSplit+LL incorporates two pro-
posed operators into the effective BnB algorithm McSplit.
The first one is a new branching operator on the BnB algo-
rithm called Long-Short Memory (LSM). LSM finds the dif-
ferent properties of scoring each vertex and each vertex pair,
and applies a reasonable policy to make the score of each
vertex focus on the short-term reward and the score of each
vertex pair focus on the long-term reward. The second one is
a general operator called Leaf vertex Union Match (LUM) for
MCS and MCCS. LUM allows the common subgraph match
multiple leaf pairs whenever a vertex pair is matched, so as
to speed up the overall matching at the same time not affect
the solution optimality. Both LSM and LUM can improve the
efficiency of the BnB algorithm. Besides, LUM is a general
vertex-vertex mapping method and could be applied to other
graph matching problems.

We do extensive experiments on public instances to evalu-
ate the performance of our proposed algorithm McSplit+LL,
and the effectiveness of the two proposed operators LSM and
LUM. The results show that McSplit+LL significantly out-
performs the best-performing algorithm McSplit+RL for both
MCS and MCCS, and both LSM and LUM can improve the
efficiency and performance of the BnB algorithm.

References
[Bahiense et al., 2012] Laura Bahiense, Gordana Manić,

Breno Piva, and Cid C De Souza. The maximum com-
mon edge subgraph problem: A polyhedral investigation.
Discrete Applied Mathematics, 160(18):2523–2541, 2012.

[Bai et al., 2021] Yunsheng Bai, Derek Xu, Yizhou Sun, and
Wei Wang. Glsearch: Maximum common subgraph detec-
tion via learning to search. In The 38th International Con-
ference on Machine Learning, ICML 2021, pages 588–
598, 2021.

[Blindell et al., 2015] Gabriel Hjort Blindell,
Roberto Castañeda Lozano, Mats Carlsson, and Christian
Schulte. Modeling universal instruction selection. In
Principles and Practice of Constraint Programming -
21st International Conference, CP 2015, pages 609–626,
2015.

[Bonnici et al., 2013] Vincenzo Bonnici, Rosalba Giugno,
Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro. A
subgraph isomorphism algorithm and its application to
biochemical data. BMC bioinformatics, 14(7):1–13, 2013.

[Bruschi et al., 2006] Danilo Bruschi, Lorenzo Martignoni,
and Mattia Monga. Detecting self-mutating malware using
control-flow graph matching. In Detection of Intrusions
and Malware & Vulnerability Assessment, Third Interna-
tional Conference, DIMVA 2006, pages 129–143, 2006.

[Choi et al., 2012] Jaeun Choi, Yourim Yoon, and Byung-Ro
Moon. An efficient genetic algorithm for subgraph iso-
morphism. In Proceedings of the 14th annual conference
on Genetic and evolutionary computation, pages 361–368,
2012.

[Damiand et al., 2011] Guillaume Damiand, Christine Sol-
non, Colin De la Higuera, Jean-Christophe Janodet, and
Émilie Samuel. Polynomial algorithms for subisomor-
phism of nd open combinatorial maps. Computer Vision
and Image Understanding, 115(7):996–1010, 2011.

[Duesbury et al., 2017] Edmund Duesbury, John D Holli-
day, and Peter Willett. Maximum common subgraph
isomorphism algorithms. MATCH Communications in
Mathematical and in Computer Chemistry, 77(2):213–
232, 2017.

[Ehrlich and Rarey, 2011] Hans-Christian Ehrlich and
Matthias Rarey. Maximum common subgraph isomor-
phism algorithms and their applications in molecular
science: a review. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 1(1):68–79, 2011.

[Englert and Kovács, 2015] Péter Englert and Péter Kovács.
Efficient heuristics for maximum common substructure
search. Journal of chemical information and modeling,
55(5):941–955, 2015.

[Gay et al., 2014] Steven Gay, François Fages, Thierry Mar-
tinez, Sylvain Soliman, and Christine Solnon. On the sub-
graph epimorphism problem. Discrete Applied Mathemat-
ics, 162:214–228, 2014.

[Giugno et al., 2013] Rosalba Giugno, Vincenzo Bonnici,
Nicola Bombieri, Alfredo Pulvirenti, Alfredo Ferro, and

Dennis Shasha. Grapes: A software for parallel search-
ing on biological graphs targeting multi-core architectures.
PloS one, 8(10):e76911, 2013.

[Hati et al., 2016] Avik Hati, Subhasis Chaudhuri, and Ra-
jbabu Velmurugan. Image co-segmentation using maxi-
mum common subgraph matching and region co-growing.
In Computer Vision - ECCV 2016 - 14th European Con-
ference, pages 736–752, 2016.

[Jiang and Ngo, 2003] Hui Jiang and Chong-Wah Ngo. Im-
age mining using inexact maximal common subgraph of
multiple args. In International conference on visual infor-
mation system, volume 2, page 3, 2003.

[Liu et al., 2020] Yanli Liu, Chu-Min Li, Hua Jiang, and
Kun He. A learning based branch and bound for maximum
common subgraph related problems. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 2392–2399, 2020.

[McCreesh et al., 2017] Ciaran McCreesh, Patrick Prosser,
and James Trimble. A partitioning algorithm for maxi-
mum common subgraph problems. In The Twenty-Sixth
International Joint Conference on Artificial Intelligence,
IJCAI 2017, pages 712–719, 2017.

[Park et al., 2013] Younghee Park, Douglas S Reeves, and
Mark Stamp. Deriving common malware behavior through
graph clustering. Computers & Security, 39:419–430,
2013.

[Raymond and Willett, 2002] John W Raymond and Peter
Willett. Maximum common subgraph isomorphism algo-
rithms for the matching of chemical structures. Journal of
computer-aided molecular design, 16(7):521–533, 2002.

[Sevegnani and Calder, 2015] Michele Sevegnani and Muffy
Calder. Bigraphs with sharing. Theoretical Computer Sci-
ence, 577:43–73, 2015.

[Shearer et al., 2001] Kim Shearer, Horst Bunke, and Svetha
Venkatesh. Video indexing and similarity retrieval by
largest common subgraph detection using decision trees.
Pattern Recognition, 34(5):1075–1091, 2001.

[Solnon et al., 2015] Christine Solnon, Guillaume Damiand,
Colin De La Higuera, and Jean-Christophe Janodet. On the
complexity of submap isomorphism and maximum com-
mon submap problems. Pattern Recognition, 48(2):302–
316, 2015.

[Solnon, 2010] Christine Solnon. Alldifferent-based filtering
for subgraph isomorphism. Artificial Intelligence, 174(12-
13):850–864, 2010.

[Zampelli et al., 2010] Stéphane Zampelli, Yves Deville,
and Christine Solnon. Solving subgraph isomorphism
problems with constraint programming. Constraints,
15(3):327–353, 2010.

[Zanfir and Sminchisescu, 2018] Andrei Zanfir and Cristian
Sminchisescu. Deep learning of graph matching. In 2018
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, pages 2684–2693, 2018.

	1 Introduction
	2 Problem Definition
	3 Branch and Bound for MCS
	3.1 The BnB Framework for MCS Problems
	3.2 McSplit and McSplit+RL

	4 The Proposed McSplit+LL Algorithm
	4.1 Further Discussion on McSplit(+RL)
	4.2 Long-Short Memory Branching Heuristic
	4.3 Leaf Vertex Union Match

	5 Experiments
	5.1 Experimental Setup
	5.2 Benchmark Datasets
	5.3 Comparisons on MCS
	5.4 Comparisons on MCCS
	5.5 Ablation Study

	6 Conclusion

