Supplementary files to:

CVD-coated carbon xerogels for negative electrodes of Na-ion batteries

Berke Karaman¹, Hélène Tonnoir², Da Huo², Bryan Carré¹, Alexandre F. Léonard³, Jimena Castro Gutiérrez⁴, Marie-Laure Piedboeuf¹, Alain Celzard^{4,5}, Vanessa Fierro⁴, Carine Davoisne², Raphaël Janot², Nathalie Job*¹

¹Department of Chemical Engineering - NCE (Nanomaterials, Catalysis, Electrochemistry), University of Liège, 4000 Liège, Belgium ²Laboratoire de Réactivité et Chimie des Solides - LRCS, UMR7314 CNRS, Université de Picardie Jules Verne, Amiens, France ³Department of Chemical Engineering - CAPPOP University of Liège, 2000 Liège, Belgium

³Department of Chemical Engineering - CARPOR, University of Liège, 4000 Liège, Belgium ⁴ Université de Lorraine, CNRS, Institut Jean Lamour - IJL, 88000 Épinal, France

⁵Institut Universitaire de France - IUF, 75231 Paris, France

(*corresponding author: <u>Nathalie.Job@uliege.be</u>)

Physico-chemical characterization

Figure S.I.1. X-ray diffractograms of CX-LPH pyrolyzed at 800 $^{\circ}$ C (—) and at 900 $^{\circ}$ C (—), and CX-LPH-C (—).

Table S.I.1.	Structural	parameters	of	CX-LPH	pyrolyzed	at	800	°C	and	900	°C,	and	CX-
LPH-C samp	oles.												

			CX-LPH	CX-LPH	CX-LPH-C	
Pyrolysis/processing temperature (°C)			800	900	900	
XRD	L_{a}	(nm)	3.38 ± 0.01	3.34 ± 0.01	3.82 ± 0.01	
	$L_{ m c}$	(nm)	1.09 ± 0.19	1.04 ± 0.16	0.99 ± 0.11	
	$d_{(002)}$	(nm)	0.405 ± 0.001	0.409 ± 0.001	0.392 ± 0.001	

Figure S.I.2. Cumulated pore volume as a function of the pore diameter, d_p , measured by Hg porosimetry. (a) Uncoated samples: CX-450 (—), CX-1500 (—), CX-2500 (—), CX-LPH (—); (b) comparison between uncoated and coated samples: CX-LPH (—) and CX-LPH-C (—). The intrusion volume corresponding to the meso/macropore volume of the material (excluding intrusion between particles) is indicated by vertical arrows.

Sample	$C_{ m tot,disch}$	Cirrev	Crev	ICE	C_{slope}	C _{plateau}	
	$(mAh g^{-1})$	$(mAh g^{-1})$	$(mAh g^{-1})$	(%)	$(mAh g^{-1})$	$(mAh g^{-1})$	
CX-450	563 ± 104	398 ± 78	164 ± 26	29	164 ± 26	_a	
					(29 %)		
СХ-450-С	364 ± 31	211 ± 19	153 ± 15	42	126 ± 17	27 ± 2	
					(35 %)	(7 %)	
CX-1500	323 ± 3	179 ± 4	143 ± 5	45	125 ± 3	19 ± 3	
					(39 %)	(6%)	
СХ-1500-С	290 ± 8	56 ± 2	238 ± 7	81	147 ± 4	88 ± 3	
					(51 %)	(30 %)	
CX-2500	329 ± 13	123 ± 20	206 ± 19	63	150 ± 8	56 ± 11	
					(46 %)	(17 %)	
СХ-2500-С	313 ± 38	68 ±7	263 ± 39	79	170 ± 21	75 ± 10	
					(55 %)	(24 %)	
CX-LPH	312 ± 27	64 ± 18	248 ± 12	80	150 ± 11	99 ± 5	
					(48 %)	(32 %)	
CX-LPH-C	353 ± 12	56 ± 2	298 ± 11	84	169 ± 7	129 ± 7	
					(48 %)	(36 %)	

Table S.I.2. Electrochemical performance of the carbon xerogels.

^a No plateau observed.

 $C_{\text{tot,disch}}$: total first discharge capacity.

 C_{irrev} : irreversible capacity at first cycle.

 C_{rev} : reversible capacity at first cycle.

ICE: Initial Coulombic Efficiency.

 C_{slope} : capacity corresponding to the sloping part of the first discharge. Values into brackets are the percentage of the total discharge associated to the sloping part of the curve.

 C_{plateau} : capacity corresponding to the low-voltage plateau of the first discharge. Values into brackets are the percentage of the total discharge associated to the low-voltage plateau of the curve.

Cycling in NIB half-cells

Figure S.I.3. 3rd cycle in half-cell configuration of (a) CX-450, (b) CX-450-C, (c) CX-1500, (d) CX-1500-C, (e) CX-2500, (f) CX-2500-C, (g) CX-LPH et (h) CX-LPH-C at C/20 (—), C/10 (—), C/5 (—), C/2 (—), C (—), 2C (—), 5C (—) and C/20 (––).

Li⁺ insertion-deinsertion in pristine CX and CVD-coated CX

The two materials selected correspond to samples CX-Ref (uncoated) and CX-CVD (CVD-coated) of reference [28]. The electrodes were prepared as detailed in reference [28] and in the present paper.

Half-cells were assembled in CR2032 coin cells [28], where the tested material acted as positive electrode and a Li-metal disk (MTI corp.) as the negative, reference and counter electrode. A Celgard[®] separator soaked with 80 μ L of LP71 (1 M LiPF₆ in EC:DEC:DMC 1:1:1) electrolyte was placed in-between. The cell assembly was performed in an Ar-filled glove-box (MBraun). Cyclic voltammetry was performed at a scan rate of 0.05 mV s⁻¹ between 0.005 and 1.5 V vs. Li⁺/Li with a Biologic VMP3 multichannel potentiostat at a controlled temperature of 25°C.

Figure S.I.4. Cyclic voltammetries (cycle #10) in LIB half-cell configuration for graphite (—), uncoated CX (CX-Ref [28]) (—) and CVD-covered CX (CX-CVD [28]) (—). (a) All three samples, (b) CX-Ref and CX-CVD alone, to better distinguish the insertion/deinsertion peak at ~0.25 V vs. Li⁺/Li.