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In this opinion piece, we explore under which circumstances species traits are ex-
pected to explain the rates and directions of species redistributions in response to 
climate change and discuss how future trait- based approaches may benefit from 
fully embracing the complexity of species range shifts. We provide a set of consid-
erations that we hope will help identify the underlying drivers of species range shifts 
and develop effective strategies that support biodiversity conservation under climate 
change.
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Abstract
Ecological and evolutionary theories have proposed that species traits should be 
important in mediating species responses to contemporary climate change; yet, 
empirical evidence has so far provided mixed evidence for the role of behavioral, life 
history, or ecological characteristics in facilitating or hindering species range shifts. 
As	such,	the	utility	of	trait-	based	approaches	to	predict	species	redistribution	under	
climate change has been called into question. We develop the perspective, supported 
by evidence, that trait variation, if used carefully can have high potential utility, but 
that past analyses have in many cases failed to identify an explanatory value for traits 
by not fully embracing the complexity of species range shifts. First, we discuss the 
relevant theory linking species traits to range shift processes at the leading (expansion) 
and trailing (contraction) edges of species distributions and highlight the need to clarify 
the mechanistic basis of trait- based approaches. Second, we provide a brief overview 
of range shift–trait studies and identify new opportunities for trait integration that 
consider range- specific processes and intraspecific variability. Third, we explore 
the circumstances under which environmental and biotic context dependencies are 
likely to affect our ability to identify the contribution of species traits to range shift 
processes. Finally, we propose that revealing the role of traits in shaping species 
redistribution may likely require accounting for methodological variation arising 
from the range shift estimation process as well as addressing existing functional, 
geographical, and phylogenetic biases. We provide a series of considerations for 
more effectively integrating traits as well as extrinsic and methodological factors 
into species redistribution research. Together, these analytical approaches promise 
stronger mechanistic and predictive understanding that can help society mitigate and 
adapt to the effects of climate change on biodiversity.
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1  |  INTRODUC TION

Contemporary climate change has triggered the largest redistri-
bution of life on Earth in the last tens of thousands of years (Chen 
et al., 2011; Lenoir et al., 2020; Parmesan, 2006). Yet, attributing 
the variation observed among species range shifts to specific mech-
anisms governing these range shift processes remains unresolved. 
Paralleling the rise of trait- based approaches to understand com-
munity	 assembly	 (McGill	 et	 al.,	 2006; Violle et al., 2007), the last 
two decades have witnessed increased interest in the role of species 
traits—namely the behavioral, morphological, physiological, or life 
history properties of organisms—in mediating species redistribution 
(Estrada et al., 2016;	Madsen-	Hepp	et	al.,	2023;	Miller	et	al.,	2023; 
Williams et al., 2008). Theory suggests that various (and often dif-
ferent) traits can explain range shift processes at the leading (i.e., 
expanding) and trailing (i.e., contracting) edges of species distri-
butions, thus providing testable hypotheses to understand causal 
mechanisms (e.g., Bates et al., 2014; Buckley & Kingsolver, 2012; 
Thurman et al., 2020).	 Uncovering	 relationships	 between	 species'	
traits and range dynamics may also allow for the identification of 
priority species and guide adaptive management strategies under 
climate change (Beever et al., 2016; Foden et al., 2019).

Although	 there	 are	 case	 studies	 successfully	 linking	 species	
traits to species range shifts (e.g., warming tolerance and life his-
tory strategy for freshwater fishes: Comte et al., 2014; life forms and 
elevation ranges for plants: Lenoir et al., 2008; resource capture in 
plants:	Madsen-	Hepp	et	al.,	2023; dispersal capacity in butterflies: 
Pöyry et al., 2009; mobility and range size in marine species: Sunday 
et al., 2015),	 other	 studies	 have	 found	 poor	 (Moritz	 et	 al.,	 2008; 
Pinsky et al., 2013) or counterintuitive (Tingley et al., 2012) associa-
tions.	Hence,	syntheses	and	meta-	analyses	tend	to	show	weak	or	in-
consistent effects of species traits on interspecific variation in rates 
of	range	shifts	(Angert	et	al.,	2011;	MacLean	&	Beissinger,	2017). Do 
these discrepancies between theory and empirical evidence suggest 
that trait- based approaches are not generalizable across species? 
Or, alternatively, have we as a research field been missing subtleties 
in trait–environment relationships (i.e., ecological processes) or not 
appropriately accounting for methodological factors (i.e., estimation 
processes) that affect detection and attribution of range shifts?

Here,	 we	 propose	 that	 integrative	 approaches	 accounting	 for	
both ecological and estimation processes are needed to fully under-
stand range shift–trait associations (Box 1). First, we provide a brief 
synthesis of the relevant theories and empirical studies linking spe-
cies traits to contemporary range shifts. Next, supported by simula-
tions, we discuss the extent to which range shift–trait associations 
are mediated by abiotic and biotic factors, thereby blurring the per-
ceived predictive power of traits. Finally, we explore the influence of 
methodology and research biases (i.e., functional, geographical, and 

phylogenetic) on our ability to understand range shifts. We conclude 
that it is premature to discard trait- based approaches for having low 
utility in species redistribution research. Rather, we posit that im-
proved analytical approaches show substantial promise for combin-
ing traits with environmental and methodological data to accurately 
predict ongoing and future range shifts.

2  |  A SSESS THE MECHANISTIC BA SIS OF 
TR AITS

Trait- based approaches offer clear conceptual foundations to un-
derstand the mechanisms underlying species range shifts (Box 2; 
Table 1).	 However,	 some	 major	 challenges	 remain	 for	 trait-	based	
approaches	to	fulfill	 their	potential.	Among	them,	we	first	 identify	
the need to clarify the mechanistic basis of the set of species range 
shift–trait associations in view of relevant ecological and evolution-
ary theories.

2.1  |  Account for interrelationships among traits

Traits reflect complex patterns of co- adaptation, allocation trade- 
offs, and by- products of selection—the so- called trait syndromes 
(Mauro	&	Ghalambor,	2020;	Salguero-	Gómez	et	al.,	2016; Stevens 
et al., 2014)—such that covariations among traits can obscure the 
mechanisms underlying climate- induced range shifts. For example, 
body size is viewed as a master trait or the ‘Swiss army knife’ trait 
that is integrative of a large number of physiological, life history, and 
behavioral processes (Box 3; Figure 2). Therefore, even if body size 
can be an efficient predictor of range shifts, it provides only weak 
mechanistic understanding owing to trait covariations (Visakorpi 
et al., 2023), especially as these trait syndromes may be inconsist-
ent across taxonomic groups. For example, small- bodied species 
are usually associated with higher fecundity and shorter generation 
time among terrestrial animals (r- strategists) but not necessarily 
among aquatic animals (Winemiller & Rose, 1992). Trophic position 
increases with body size in fishes but not in mammals (Romanuk 
et al., 2011; Tucker & Rogers, 2014), and plants and animals appear 
to achieve demographic resilience through different combinations 
of life history traits (Capdevila et al., 2022). In this context, when 
pooling all taxonomic groups together, it is not entirely surprising 
that conflicting relationships between range shifts and these traits 
are frequently reported, sometimes in opposition with prevailing hy-
potheses	(MacLean	&	Beissinger,	2017).

These results caution against using a single trait to clarify the 
mechanisms of range shifts, especially across diverse taxonomic 
groups. Instead, detailed hypotheses and methods about range 

K E Y W O R D S
climate change, leading edge, mechanism, population dynamics, research bias, species range 
shift, trailing edge, trait- based approach
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BOX 1 Embracing the complexity of species range shifts

Documented range shifts (i.e., general directions and speed of species range shifts) are typically estimated at the leading edge of species 
distribution (expanding or cold edge), usually located at high latitude, high elevation on land or at deeper depths in the oceans in the 
context of current climate warming, and at the trailing edge of species distribution (contracting or warm edge), usually located at low 
latitude, low elevation on land or at shallower depths in the oceans (Figure 1). These documented range shifts at the cold (e.g., upper 
elevation) and warm (e.g., lower elevation) edges along spatial gradients are frequently equated to the dynamics of range expansion 
and contraction, although we note that each edge can either expand or contract.

Documented	range	shifts	are	underpinned	by	complex	ecological	processes,	among	which	species'	traits	are	expected	to	be	key—but	
not	the	sole—underlying	drivers.	Here,	we	define	a	trait	as	any	intrinsic	morphological,	physiological,	or	phenological	feature	meas-
urable at the individual level that influences species ecological performance, without consideration to the extrinsic environment or 
other levels of biological organization (Violle et al., 2007). It follows that the ecological processes underlying range shifts are likely to 
arise	from	the	interaction	between	species'	traits	(or	the	set	of	intrinsic	factors	such	as	thermal	tolerance	and	dispersal	ability)	and	

F I G U R E  1 Set	of	factors	and	interactions	that	may	influence	the	documented	patterns	of	range	shifts	and	suggested	steps	to	
model range shift- trait associations. Documented patterns of range shifts at the trailing (i.e., range contraction) and leading (i.e., 
range expansion) edges of species distributions are typically documented in response to anthropogenic climate change along 
spatial gradients such as latitude, elevation (on land), and depth (in the oceans), and reflect both (a) the ecological processes (left 
panel) and the (b) estimation processes (right panel), which involve a set of intrinsic, extrinsic, and methodological factors (see 
Box 1). Ecological processes may involve complex interaction terms between species traits and the environmnetal context such 
that it suggests complex abiotic or biotic context dependencies. Numbers illustrate a set of suggestions to improve our ability to 
decipher the mechanisms of range shifts.
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shift–trait associations must be specified. First, it is important to im-
plement a systematic and ecologically defensible approach of trait 
selection with clear links to range shift processes. Second, formal 
tests of hypotheses would benefit from being developed within a 
methodological framework addressing the interrelationships among 
traits. For example, advanced multivariate regression techniques 
(e.g., partial least square regression, geographically weighted regres-
sion, hierarchical partitioning, and structural equation modeling) 
lend themselves to understanding the complex relationships among 
a (very) large number of traits and their effects on ecological pro-
cesses that can also take latent and non- stationary variables into 
consideration (Carrascal et al., 2009;	Graham,	2003), thus providing 
useful tools to identify the potential mechanisms underlying range 
shifts (e.g., Bertrand, 2019; Bertrand et al., 2016; Pöyry et al., 2009).

2.2  |  Test stage- specific range shift- trait 
associations

Range shifts are by essence temporally dynamic and can be con-
ceptualized as consecutive but interrelated stages, composed at the 
trailing edge of (i) decline in performance, (ii) population decrease, 
and (iii) local extirpation, while at the leading edge, it can be com-
posed of (i) dispersal (including both passive and decision- mediated 
active dispersal), (ii) population growth, and (iii) persistence (Bates 
et al., 2014; Estrada et al., 2016). This suggests that developing and 
testing stage- specific range shift–trait association expectations 
could improve our ability to develop a mechanistic understand-
ing of the drivers of range shifts that explicitly consider both the 
spatial and temporal components of range shift processes. For in-
stance, different facets of ecological generalism or specialism may 
capture different stages of the range shift process, which may lead 
to conflicting hypotheses (and weak cross- study inferences) if the 
temporal dynamic of the range shift is ignored. Ecological gener-
alism is often correlated with range size, and thus expected to be 
intrinsically linked with the evolution of dispersal ability over long 
timescales	 (Alzate	&	Onstein,	2022; Lancaster, 2022). Conversely, 

specialist species may have evolved better habitat- selection abilities 
(Jacob et al., 2018) and may therefore better track climatic conditions 
over short timescales; a hypothesis that has recently gained traction 
in contemporary climate- driven range shifting moths, butterflies, 
and	birds	at	their	leading	edge	(Hällfors	et	al.,	2023). On examining 
coral-	reef	fish	species,	Monaco	et	al.	(2020) also demonstrated that 
dispersal capacity contributed to range expansions only in the dis-
persal stage of redistribution [stage (i) above], whereas resource- use 
breadth was more important during the growth and establishment 
stages	 [stages	 (ii)	 and	 (iii)	 above].	As	 such,	 thermal	 specialists	may	
display a higher dispersal propensity but being a generalist along 
other niche dimensions (e.g., tolerance to drought or generalist diet) 
may still be expected to facilitate dispersal and successful establish-
ment.	Understanding	 range	 shifts	 through	 the	 lens	of	 traits	might	
therefore benefit from looking at how traits act sequentially along 
the range shift pathway, and potentially interact beyond what might 
be expected from their additive effects (e.g., ‘extinction- promoting 
traits’; Davies et al., 2004).

2.3  |  Consider nonlinear range shift–trait 
associations

Finally, it is important to note that many associations between traits 
and ecological processes are intrinsically nonlinear. In the context 
of species redistribution, the unimodal allometric scaling of disper-
sal	 and	maximum	 speed	with	body	 size	 (Hirt	 et	 al.,	2017; Stevens 
et al., 2014) or the fact that even species with moderate disper-
sal abilities may be able to keep up with the velocity of isotherm 
shifts (Schloss et al., 2012;	Urban	et	al.,	2013) could translate into 
an asymptotic relationship between range expansion and body size. 
Likewise, given that the thresholds leading to extirpations are not 
expected to be reached for all species (e.g., Pinsky et al., 2019), range 
contractions might only be expected when temperatures greatly 
exceed thermal tolerance limits. Yet, hitherto, most studies have 
used linear responses to capture relationships between range shifts 
and	species	traits.	Using	models	carefully	 informed	by	theory	may	

its abiotic and biotic environmental context (or set of extrinsic factors such as climate change exposure, biotic dependencies, and 
habitat characteristics).

The documented range shifts are additionally influenced by the estimation processes, as the direction and speed of species range 
shifts cannot be observed directly but instead are dependent on the set of methodological factors used, including the underlying 
data types (e.g., species abundance, presence- absence), spatial (e.g., grain and extent), and temporal (e.g., number of time periods) 
resolution	of	available	datasets,	and	the	statistical	methods	(e.g.,	quantile	regression,	species	distribution	models).	Given	the	varia-
tion caused by circumstances of individual shifts and the methods used to detect them, analytical methods that consider both are 
necessary for properly attributing range shifts to associated mechanisms when synthesizing data across studies. We note that spe-
cies traits (and to some extent the set of extrinsic factors) are also prone to measurement errors and are themselves dependent on 
the estimation process such as the inclusion of intraspecific variability, or choice of the upper endpoint of the thermal performance 
curve (e.g., lethality vs. loss of motor control), among others.

BOX 1 (Continued)
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BOX 2 Theoretical expectations for range shift- trait associations

Physiology: From a fundamental point of view, species distribution limits and responses to climate change chiefly depend on the thermal 
(and other climate) sensitivity of species physiological performance as well as the level and temporal patterns of exposure, which together 
affect	population	persistence	at	the	trailing	edge	and	opportunities	for	leading	edge	expansion	(Angilletta	et	al.,	2003;	Huey	et	al.,	2012; 
Kingsolver et al., 2013) (Table 1). To buffer themselves against sublethal or lethal thermal stress, organisms have evolved strategies ena-
bling them to adjust physiological responses over the short to long term (days to years). Examples include active transpiration in plants 
(De Frenne et al., 2021)	and	thermal	acclimation	in	ectotherms	(Gunderson	&	Stillman,	2015; Seebacher et al., 2015; Weaving et al., 2022). 
Evolution	of	physiological	traits	such	as	heat	or	cold	tolerance	can	also	facilitate	expansion	or	slow	down	contraction	(Martin	et	al.,	2023), 
but these effects are unlikely to be universal. Physiological plasticity can initially facilitate entry into and persistence within novel environ-
ments but can impede long- term evolutionary adaptation when it acts in the same direction as selection (e.g., Leonard & Lancaster, 2020).

Behavior and phenology: Behavioral thermoregulation in mobile ectotherms allows individuals to exploit local heterogeneity in mi-
croclimates by shifting the time (e.g., diurnal, circadian cycles) and place (e.g., burrowing, nesting) of activity (Kearney et al., 2009; 
Sunday et al., 2014), which may slow range contraction at the trailing edge (Table 1). Likewise, in endotherms, behaviors such as 
torpor	and	hibernation	can	allow	regulation	of	body	temperature	to	survive	adverse	conditions	(Geiser	&	Turbill,	2009). Phenological 
adjustments can also hinder range contractions by enabling plants and animals to track climatic changes in time (instead of space) via 
shifts in seasonal life history events (e.g., emergence, development, and reproduction), as well as promote range expansion at their 
leading edge by improving survival after establishment (Socolar et al., 2017; Vitasse et al., 2021; Zettlemoyer & Peterson, 2021).

Biotic interactions: Species can be indirectly affected by climate change through altered biotic interactions, as mediated through 
their	traits	 (Gunderson	et	al.,	2017; Schleuning et al., 2020;	Urban	et	al.,	2013) (Table 1). For instance, species engaged in highly 
specialized interactions (e.g., for reproduction via pollinator dependency, for dispersal through zoochory) may be more sensitive due 
to mismatches in climatic sensitivities or dispersal ability with their obligate species. These indirect sensitivities can precipitate range 
contraction or slow range expansion (Cahill et al., 2013;	Gilman	et	al.,	2010; Schleuning et al., 2020). Conversely, better competitors 
may be less susceptible to biotic resistance from recipient communities at their leading edges (wherein the resident communities 
exert negative effects on the range shifting species, usually through predation or competition) and also less susceptible to competitive 
exclusion	at	their	trailing	edges,	including	from	novel	range	shifting	competitors	(Alexander	et	al.,	2015; Sanczuk et al., 2022).

Dispersal:	As	climate	change	opens	new	suitable	habitats,	dispersal	is	expected	to	be	a	key	mechanism	by	which	species	track	climate	
shifts through space, especially at the leading edge (Corlett & Westcott, 2013; Schloss et al., 2012) (Table 1). For instance, movement 
costs for active dispersers can be lower in large- bodied species with enhanced locomotion efficiency, species displaying specific 
dispersal structures (e.g., wing size in insects and birds or aspect ratio of the caudal fin in fish), species with better navigational 
skills, or species displaying collective dispersal behaviors (Berdahl et al., 2018; Sambilay, 1990; Stevens et al., 2014).	Among	passive	
dispersers, investment in seed dispersal structures or longer duration of dispersal phase also leads to greater dispersal opportunities 
(Thomson et al., 2018). In addition, human- mediated dispersal (i.e., species translocation and assisted migration in general) may play 
a	key	role	in	facilitating	range	expansions	of	species	of	commercial	or	recreational	interest	(e.g.,	Alofs	et	al.,	2014).

Pace of life: Fast life history attributes can confer a higher demographic potential to rapidly establish new founding populations at the 
leading edge (Table 1).	High	propagule	pressure	(i.e.,	the	number	and	frequency	of	dispersing	individuals)	reduces	the	effects	of	genetic,	
environmental,	and	demographic	stochasticity,	and	high	population	growth	rates	reduce	genetic	bottlenecks	and	Allee	effects	that	may	
precipitate extinction in small populations (Roman & Darling, 2007;	Taylor	&	Hastings,	2005).	Higher	fecundity	and	shorter	generation	
times are also expected to promote faster demographic compensation and shorter recovery times after mortality events (Capdevila 
et al., 2022), and thus slow down range contractions at the trailing edge in the short term. Nonetheless, demographic collapses and range 
contractions may be slower to detect in long- lived species, where older individuals may be indicative of past conditions (extinction debt; 
Boisvert-	Marsh	et	al.,	2014; Pacifici et al., 2017), resulting in a negative association between range shifts and lifespan.

Ecological generalism: Ecological generalism is expected to allow propagules to establish faster and farther at expanding limits and 
further improve persistence after dispersal due to the wider diversity of environments tolerated (Stevens et al., 2014) (Table 1). 
For example, tolerance to light availability toward high latitudes and oxygen depletion toward high elevations (Jacobsen, 2020; 
Ljungström et al., 2021; Spence & Tingley, 2020) or acclimation to hypoxia in aquatic systems (Souchet et al., 2020; Storz et al., 2010) 
may be particularly important to enable climate- induced range expansions. Species that display a greater potential for cognitive or 
behavioral flexibility may also be able to better cope with changing environmental conditions through local shifts in microhabitat or 
diet, resulting in slower trailing edge contractions (“cognitive buffer hypothesis”; Baldwin et al., 2022).
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TA B L E  1 Mechanisms	by	which	species	traits	are	expected	to	mediate	range	shifts	and	selected	trait	examples.

Category of 
mechanism Trait

Example (expressed rel. to 
higher values of each trait)

Temperature- driven range shift- trait 
expectation

Moderators of traits 
(plasticity and evolutionary 
potential)

Physiology High-	temperature	
physiology

Heat	tolerance	(as	compared	
to experienced 
temperature)

Hinders	TE	contraction	(decrease	
sensitivity to heat waves)

Thermal plasticity and niche 
shifts

Cold/heat tolerance 
acclimation; facilitates LE 
expansion and hinders 
TE contraction (lower 
sensitivity to temperature 
fluctuations)

Behavior and 
phenology

Behavioral 
thermoregulation

Selection of shaded 
microhabitats

Hinders	TE	contraction	(avoids	
overheating)

Phenological plasticity
Shift in emergence timing; 

hinders LE expansion 
and TE contraction 
(tracks shifting climate 
conditions in time) or 
facilitates LE expansion 
(improves fitness in new 
environments)

Types of phenological 
cues as 
information of 
future climates

Whether organisms use 
temperature or light as a 
phenological cue

Facilitates LE expansion (temperature- 
dependence of cues enable faster 
phenological responsiveness)

Biotic interactions Interaction 
specialization

Resource- use breadth Facilitates LE expansion (facilitates en 
route fueling and establishment in 
new communities) and hinders TE 
contraction driven by indirect biotic 
effects (by enabling food switching)

Morphological plasticity
Induction of morphological 

defenses; facilitates LE 
expansion (protection 
from novel predators)

Competitive ability Resource exploitation 
capacity

Facilitates LE expansion (reduces 
biotic resistance) and hinders TE 
contraction (if competition is or 
become the dominant factor)

Dispersal Dispersal mode Whether organisms 
disperse via: passive, 
crawling, swimming, or 
flying mode

Facilitates LE expansion (higher 
dispersal distances)

Evolution of dispersal capability
Increase in maximum dispersal 

distance; facilitates LE 
expansion (via spatial 
sorting of alleles during 
range expansion and 
release from intraspecific 
competition)

Migratory	tendency Whether organisms are: 
resident, irregular 
migrant, regular migrant

Facilitates LE expansion (better 
navigatory skills)

Pace of life Life history Life history components 
(age at maturity, 
fecundity, generation 
time, longevity) 
capturing slower to 
faster pace of life

Facilitates LE expansion (more 
propagule production events and 
numbers in fast- lived species). 
Either hinders (higher demographic 
compensation and shorter recovery 
times in fast- lived species) or 
facilitate (extinction debt paid 
faster in short- lived species) TE 
contraction

Developmental plasticity
Development time; facilitates 

LE expansion (longer 
development times 
improves fecundity)

Ecological generalism Abiotic	niche	breadth Degree of tolerance to 
a diversity of abiotic 
factors	(pH,	O2, drought, 
light)

Facilitate LE expansion (larger range 
of environments tolerated during 
dispersal and establishment)

Physiological plasticity
Drought	acclimation;	Hinders	

TE contraction (lower 
sensitivity to drought)

Cognitive flexibility Relative brain size Hinders	TE	contraction	(adjust	behavior	
to changing conditions)

Note:	Multiple	traits	influence	species	distribution	limits	and	range	dynamics	in	response	to	climate	change.	Species-	level	traits	can	be	organized	
into major categories of mechanisms that may vary in their degree of intraspecific variation expressed in nature. Furthermore, traits exhibit varying 
degrees of phenotypic plasticity or additive genetic variation upon which selection can act to compensate for the effects of environmental change 
(as	exemplified	in	the	“Moderator	of	traits”	column).	The	directionality	of	the	expected	range	shift-	trait	relationship	is	given	with	respect	to	high	trait	
values but opposite effects can be expected for lower trait values. See Box 2.
Abbreviations:	LE,	leading	edge;	TE,	trailing	edge.
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therefore represent new opportunities to reveal the contribution of 
species traits to range shifts (Beissinger & Riddell, 2021; Stenseth & 
Mysterud,	2002).

3  |  A SSESS OPPORTUNITIES FOR NE W 
TR AIT INTEGR ATION

The complexity of the mechanisms underlying range shifts is re-
flected by the wide suite of traits that have been used and tested 
in cross- species comparisons of range shifts (Figure 3). Still, this 
synthesis	of	 the	species'	 range	shift–trait	 associations	also	 reveals	
opportunities for new trait integration that would support a more 
mechanistic understanding of the drivers of range shifts.

3.1  |  Integrate traits that capture the 
mechanisms of range shifts

Although	 in	 some	 circumstances,	 the	 same	 suite	 of	 traits	may	 be	
useful to predict both range contractions and expansions (although 
often in the opposite direction), the assumption that range expan-
sions and contractions are simply the two sides of the same coin is 
likely to be an oversimplification (Table 1). Yet, many of the same 
traits have been used with the same frequency in range shift–trait 
studies, irrespective of the range position (trailing edge, centre, or 
leading edge; Box 2; Table 1). For example, studies remain dominated 
by traits related to range size, habitat specialization, and preference, 

whose underlying mechanisms might be sometimes difficult to in-
terpret (as discussed above for body size; Box 3). In comparison, 
behavioral and physiological traits have been less explored. This 
reflects the scarcity of databases compiling organismal traits (meas-
ured on individuals) over distribution- based traits (estimated from 
species distributions) and highlights opportunities for new trait in-
tegration as data on physiological, dispersal, and behavioral traits 
become increasingly available (e.g., Bennett et al., 2018;	Herberstein	
et al., 2022; Lososová et al., 2023). This coupled with new meth-
odological approaches for trait imputation to fill in data gaps (e.g., 
Thorson et al., 2023), as well as transcriptome databases to detect 
significant gene–trait associations (e.g., Primmer et al., 2013), may 
help researchers to integrate traits that have been less explored but 
that are more likely to capture the mechanisms underlying range 
shifts.

Because of the scarcity of trait data, studies also often used 
markedly different proxies or estimates per trait, which may make 
findings on the importance of traits incomparable across studies. 
For instance, habitat breadth has been estimated using many dif-
ferent indices, including the number of habitat types (e.g., Powney 
et al., 2015), the coefficient of variation across habitat classes (e.g., 
Platts et al., 2019), and multivariate indices based on continuous 
environmental gradients (e.g., Comte et al., 2014). Yet, it is unclear 
whether these indices, estimated from a variety of variables and 
across different spatial resolutions, are inter- comparable and ap-
proximate the same hypothesized process, which makes it difficult 
to draw generalizations across systems and studies, either qualita-
tively or quantitatively through meta- analysis. Furthermore, most 
studies conduct cross- species comparisons using only adult traits, 
despite	the	fact	that	traits	can	vary	across	a	species'	lifespan	and	life	
history stages (e.g., ontogenetic niche shifts); this in turn can have di-
rect consequences on our ability to test the role of traits. For exam-
ple, the fact that thermal tolerances and plasticity can vary through 
ontogeny (e.g., plants: Caron et al., 2021; fishes: Dahlke et al., 2020; 
insects: Weaving et al., 2022) suggests that traits measured on 
non- adult life stages may be complementary and thus necessary to 
explain the rates of species redistribution. Likewise, traits can vary 
across species ranges for a variety of reasons (e.g., predation risk 
can alter the temperature dependence of life history traits: Luhring 
et al., 2018), and trailing edge populations that are often small and 
isolated often display unique intraspecific phenotypic adaptations to 
local conditions that can increase their resilience to climate change 
(Hampe	&	 Petit,	2005). Linking range shifts to traits measured at 
specific range positions represents a promising path of inquiry. 
Although	widely	available	and	easier-	to-	get	traits	may	prove	suffi-
cient	 for	certain	conservation	applications	 (Gallagher	et	al.,	2021), 
supporting a more mechanistic and predictive science of range 
shifts will likely require spending more time on difficult- to- get and 
time- consuming traits, including renewed considerations for cross- 
studies standardization and incorporation of intraspecific variability 
(e.g., across life stages or at different range positions). We do not 
suggest that there is a dichotomy between “bad” and “good” traits 
but rather that trait selection must be informed by strong a priori 

BOX 3 Body size, the Swiss army knife of all traits

Being both large and small can confer various—albeit some-
times opposite—benefits in the context of species redis-
tribution (Figure 2). Large- bodied species often display 
higher dispersal capacities (‘allometric scaling of disper-
sal‘; Stevens et al., 2014) and greater competitive abilities 
(Goldberg,	1996), while small- bodied species often display 
higher fecundity and shorter generation times (‘fast spe-
cies’; Capdevila et al., 2022)—attributes that are all ex-
pected to promote range expansion at the leading (cold) 
edge under environmental change. Large- bodied species 
can persist longer after habitat quality change due to 
their	 longer	 longevity	 (‘extinction	 debt‘;	 Boisvert-	Marsh	
et al., 2014), and small- bodied species typically display a 
lower sensitivity to heat that likely arises from metabolic 
constraints	(Peralta-	Maraver	&	Rezende,	2021) and higher 
opportunities	 for	 behavioral	 thermoregulation	 (von	 May	
et al., 2019) as well as wider range of microclimatic refu-
gia use (Pincebourde et al., 2021)—attributes that are all 
expected to hinder contraction at the trailing (warm) edge 
under environmental change.
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hypotheses based on the taxonomic and geographic scope of the 
study and the subsequent analytical framework developed using in-
formed models accounting for (co)variation among traits.

3.2  |  Consider evolutionary potential 
alongside traits

An	additional	consideration	 is	 that	 species	 trait	means	and	variances	
are not fixed but instead can change through evolutionary adapta-
tion (Diamond, 2018; Donelson et al., 2019;	Hoffmann	&	Sgrò,	2011). 
While recognizing that evolutionary potential can hardly be classified 
as a “trait,” by facilitating adaptive responses to climate change, trait 
evolution	can	strongly	influence	species'	range	shifts	and	could	thus	be	
more	often	considered	alongside	traits.	A	classic	example	is	the	evolu-
tion of dispersal ability at expanding range limits due to spatial sorting of 
the most dispersive individuals (Phillips et al., 2008; Travis et al., 2013). 
Climatic niche shifts have also been documented during range expan-
sion, which may explain why some species have shifted faster than ex-
pected (Lustenhouwer & Parker, 2022). Providing accurate estimates 

of evolutionary potential remains challenging (Forester et al., 2022; 
Hoffmann	&	Sgrò,	2011), particularly as many factors such as population 
size, phenotypic plasticity, life history traits, genetic correlations, or spa-
tial connectivity may either facilitate or hinder evolutionary responses 
to	selection	(Martin	et	al.,	2023).	Genetic	diversity	indices	(e.g.,	allelic	
richness, heterozygosity) and effective population size or genetic mark-
ers identified through genotype–environment associations or adaptive 
landscape modeling may be effective proxies for evolutionary potential, 
but are difficult to gather across multiple taxa and at large spatial ex-
tents (Capblancq et al., 2020;	Hoban	et	al.,	2022; Razgour et al., 2019; 
see also Thompson et al., 2023).	A	complementary	approach	is	to	as-
sess the degree to which species niches and underlying traits are con-
served through evolutionary time (Bennett et al., 2021; Diamond, 2018; 
Lavergne et al., 2013). While macroecological approaches may not 
provide great precision, they could nonetheless help in providing a 
benchmark to estimate evolutionary potential (Diniz- Filho et al., 2019). 
Testing whether lineages that have experienced faster niche evolution 
in the past display a higher potential for evolutionary rescue that pre-
vents range contraction in response to contemporary selective pres-
sures remains an exciting and under- explored research question.

F I G U R E  2 Benefits	of	large	versus	small	body	size	in	the	context	of	climate	change-	related	range	shifts.	See	Box 3 for more context and 
Table S1 for image attribution.



    |  9 of 21COMTE et al.

4  |  A SSESS THE ENVIRONMENTAL 
CONTE X T OF TR AITS

To illuminate the role of species traits in explaining range shifts, it is im-
portant to recognize that range shifts result from complex interactions 
between	species'	intrinsic	features	and	the	abiotic	and	biotic	context	
in which these shifts occur. It follows that examining solely species 
traits (even if these traits have a strong mechanistic basis and fine 
resolution) may fail at uncovering the mechanisms at play, particularly 

in cross- study comparisons where climate change exposure, habitat 
characteristics, and biotic dependencies can drastically vary.

4.1  |  Account for interactions between traits and 
climate exposure

One	 obvious	 extrinsic	 factor	 likely	 to	 influence	 species'	 range	
shift-	trait	associations	 is	climate	exposure.	At	 the	simplest	 level,	

F I G U R E  3 Synthesis	of	the	scientific	literature	testing	for	relationships	between	traits	and	range	shifts.	Traits	(bottom)	that	have	been	used	
in the scientific literature to explain the documented patterns and rates of species redistribution at different range parameters (top) (Narticles = 44;	
Nspecies = 9788).	Traits	have	been	coded	into	different	subcategories	and	classified	(colors)	based	on	the	hypothesized	mechanisms	that	were	
studied (Table 1). The category “Other” indicates traits used to capture the effect of extrinsic factors (e.g., exposure to climate change or other 
drivers of change) or unclear mechanisms. The thickness of the arrows denotes the number of studies that tested a particular link, where one trait 
can appear more than once (for clarity only traits that have been reported in more than one study are labeled). The list of scientific publications 
was identified based on the literature review performed by Beissinger and Ridell (2021)	and	MacLean	and	Beissinger	(2017). Only quantitative 
shifts at the species- level were kept for this figure (i.e., range expansion or contraction at the leading and trailing edges or center of the 
distribution).	See	Appendix	S1 for plots pertaining to kingdoms (plants vs. animals) and realms (marine, terrestrial, freshwater).
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without any changes in climatic conditions, species would not be 
expected to show any range shifts despite displaying very different 
traits; conversely, if climate exposure varied across regions or time 
periods of study, climate exposure alone could cause high varia-
tion in range shifts, over and above the influence of species traits. 
More	complex	interactions	between	species	traits	and	climate	ex-
posure are also likely to arise, yet they have not received the same 
level of attention compared with the individual effects of climate 
change exposure or species traits. For instance, using a process- 
based model to simulate, under a set of different climate change 
scenarios, the redistribution of virtual animal species with differ-
ent	dispersal	abilities	and	 lifespans	 (simRShift;	 see	Appendix	S2; 
Bertrand, 2012), we show that the velocity of range shifts at the 
trailing and leading edges are, at first glance, poorly correlated 
with species traits (Figure 4a,b). Indeed, lifespan and dispersal 
abilities alone explain 7.5% and 33.8%, respectively, of the simu-
lated	range	shifts	at	the	trailing	and	leading	edges.	However,	once	
we illuminate the plots with information on the velocity at which 
isotherms are shifting (expressed in terms of shifts in mean annual 
temperature along a hypothetical latitudinal gradient), interac-
tions between climate change exposure and species traits appear 
(Figure 4c,d).	 Accounting	 for	 these	 trait–environmental	 change	
interactions drastically increases the explanatory power of traits 
(up	 to	 99.5%;	 Figure 4e,f). Consistent with theoretical expecta-
tions (Table 1), we found that species with short lifespans and high 
dispersal abilities shift their distribution limits faster at the trailing 
and leading edges, respectively, and especially so when the expo-
sure	to	climate	change	is	higher.	At	the	trailing	edge,	the	velocity	
of range contraction is negatively associated with lifespan and dis-
plays an interaction with climate velocity, such that range contrac-
tions are hastened when lifespan is short and climate exposure is 
high, indicating that climate impacts are more readily detectable in 
short- lived species (Figure 4c).	At	the	leading	edge,	the	velocity	of	
range expansion is positively associated with maximum dispersal 
distance through an asymptotic relationship whose initial slope (at 
small dispersal distances) is steeper when the velocity of isotherm 
shifts increases, indicating that the expansion process is likely lim-
ited by dispersal ability (Figure 4d).

Interestingly, even if the individual effects of species traits can 
be weaker predictors of species range shifts than the individual 
effect of isotherm shift velocity, it is the interaction effect that 
captures most of the observed variation in species range shifts. 
Empirical studies in marine systems, where climate velocities are 
up to seven times higher than on land and where ocean currents 
strongly influence redistribution, also suggest that traits may be 
comparatively less important than extrinsic factors to explain vari-
ation	in	biotic	velocity	among	species	(García	Molinos	et	al.,	2022; 
Pinsky et al., 2013). Nonetheless, in accordance with our simu-
lations, Sunday et al. (2015) demonstrated that considering the 
interactions between climate exposure and species traits (includ-
ing mobility) more than doubled the percentage of explained vari-
ance in range expansion of marine fish and invertebrate species 
compared with a model accounting only for climate expectations. 

Hence,	incorporating	these	complex	interactions	may	help	reveal	
the contributions of species traits to explain the observed varia-
tion in range shift patterns, particularly when the trait effect is 
weaker (e.g., such as when considering the effect of lifespan alone 
on range contraction). Obviously, species climatic niches are by 
essence multidimensional and considering only changes in tem-
perature might also misrepresent range shift expectations (Tingley 
et al., 2012). Similarly, accounting for extreme events in addition 
to long- term climatic changes (e.g., heat waves as opposed to 
mean annual temperature trends) may better capture climate ex-
posure and subsequent impacts on the distribution of populations 
and	species	(Auth	et	al.,	2018). In this context, considering multi-
ple climate axes simultaneously (Crimmins et al., 2011; Dobrowski 
et al., 2013), using model- based bioclimatic velocities (VanDerWal 
et al., 2013) or accounting for both climatic presses and pulses 
(Harris	 et	 al.,	 2018) could help refine range shift expectations 
based on the multifaceted effects of climate change, thereby pro-
viding a stronger conceptual framework to understand the contri-
bution of species traits to range shifts.

4.2  |  Account for interactions between traits and 
other abiotic and biotic dependencies

Beyond climate exposure, a myriad of abiotic and biotic factors can 
influence the ability of species to track shifting climate conditions at 
a variety of temporal and spatial scales, as mediated through their 
traits.	Although	these	environmental	context	dependencies	must	be	
considered on a case- by- case basis, here we discuss a few examples 
to illustrate the importance of considering environment–trait inter-
actions	to	explain	variability	in	species	range	shifts.	Habitats	differ	in	
terms of spatio- temporal heterogeneity and human pressures, which 
will determine opportunities for dispersal and persistence under cli-
mate change (Pinsky et al., 2022). These variations in habitat char-
acteristics may explain the faster rates of redistribution in the ocean 
than on land (Lenoir et al., 2020), but the importance of habitat char-
acteristics to range shift processes will ultimately depend on the 
interactions with species traits. On land, landscape fragmentation 
(both natural and anthropogenic) is likely to represent a major con-
straint on species redistribution but its influence is expected to vary 
with species- specific habitat requirements, such that habitat gener-
alists may be less constrained by habitat availability than more spe-
cialized species (Platts et al., 2019). In the ocean, the opportunities 
offered by habitat verticality in 3- D habitats can mediate the rate of 
latitudinal range shifts by allowing species to locally exploit deeper 
ocean	layers	(Brito-	Morales	et	al.,	2020), yet the rates of depth shifts 
likely depend on both the niche characteristics and fishing pressure 
exerted on the shifting species (Dahms & Killen, 2023).

Biotic factors of the environment may also affect the associa-
tions between species traits and range shifts. For example, in po-
lyphagous insects, the ability to exploit alternative hosts may confer 
a survivorship advantage and decrease contraction at the trailing 
edge, but these benefits rely upon host plant availability now and 
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in	the	future	(Hellmann,	2002). Conversely, although in general, the 
higher mobility of animals compared with plants a priori suggests 
that plants should not be limited by dispersal limitations of their an-
imal vectors to keep up with climate change at their leading edge, 
defaunation of seed- dispersing birds and mammals may drastically 
reduce the ability of plants to shift their ranges (Fricke et al., 2022). 
These environmental dependencies highlight the importance of ex-
amining realized as opposed to fundamental range shift capacity 
when testing the relationships between species traits and range 
shifts through trait–environment interactions to capture the extent 
to which extrinsic factors constrain the expression of the intrinsic 
determinants of the range shifts processes (Beever et al., 2016). 
The characteristics of the range shifting species with respect to 
the recipient communities can also influence range expansions via 
biotic resistance and ecological niche opportunities as in the case 
of biological invasions (Shea & Chesson, 2002), although such hy-
potheses	have	so	far	received	mixed	support	(Alexander	et	al.,	2015; 
Miller	et	al.,	2023). There is still much to be learned by developing 
a trait- based framework that explicitly considers the biotic commu-
nity	context	(Gilman	et	al.,	2010; Lavergne et al., 2010; Schleuning 
et al., 2020), as well as capitalizing on the decades- old field of inva-
sion biology to better apprehend the mechanisms underlying range 
shifts (Pauchard et al., 2016; Wallingford et al., 2020).

5  |  A SSESS THE EFFEC TS OF THE 
ESTIMATION PROCESS AND RESE ARCH 
BIA SES

The methods used to document range shifts influence the range 
shift estimates and our ability to detect meaningful relationships 
with species traits (Brown et al., 2016; Dahms & Killen, 2023; Lenoir 
et al., 2020). Similarly, research biases may not only result in an in-
complete picture of which species and areas are vulnerable to cli-
mate change but also alter our comprehension of the underlying 
drivers of range shifts (Feeley et al., 2017; Lenoir et al., 2020).

5.1  |  Account for methodological differences in 
cross- study comparisons

The distribution and abundance patterns of species within their 
range limits are not static but fluctuate due to demographic and en-
vironmental variability and can result in gaps and fragmented areas, 
particularly at range limits (Brown et al., 1996;	Hampe	&	Petit,	2005). 
Estimating species range shifts, especially at the edges, may thus be 
particularly sensitive to the sampling method, number and consist-
ency of studied locations, temporal coverage, spatial grain, as well 
as the analytical methods used (Loehle, 2020; Shoo et al., 2006). 
Noteworthy, beyond the noise introduced by the different methods 
used in the scientific literature, the traits and the estimation process 
can interact. For instance, species detectability can vary as a func-
tion of species morphological and behavioral characteristics (e.g., 

Sólymos	et	al.,	2018), and the influence of the temporal resolution 
on perceived range shifts will likely depend on the pace of life of the 
organisms under study. Therefore, carefully accounting for method-
ological differences in cross- studies comparisons could improve our 
ability to detect ecologically meaningful relationships with species 
traits and thus our power to explain species redistribution.

5.2  |  Reduce functional biases in species 
redistribution research

Biases with respect to the trait coverage of the species for which 
range shifts have been documented may also lead to misrepresen-
tations of the strength and direction of the relationships between 
range shifts and species traits, particularly if these relationships 
are nonlinear (“functional biases”; Figure 5a–c). Yet, a comparison 
of the degree of morphological trait space covered by BioShifts, 
a range shift database compiled from the scientific literature 
(Comte et al., 2020), for two widely studied taxonomic groups—
birds and fishes—suggests that these functional biases are preva-
lent (Figure 5d,e). For instance, among terrestrial birds, range shift 
detections of functionally unique species such as flightless (e.g., 
ostrich, emu, and kiwi) or lightweight (e.g., hummingbirds) birds 
remain understudied. Similarly, a bias against small- bodied fishes 
displaying a high caudal peduncle depth is evident in both ma-
rine and freshwater species, with these attributes being strongly 
related	 to	 swimming	 ability	 (Fisher	 &	 Hogan,	 2007; Radinger & 
Wolter, 2014).	 Although	 the	 consequences	 of	 these	 functional	
biases on our ability to detect meaningful relationships between 
range shifts and species traits remain to be formally investigated, 
to fully understand range shift processes, both functionally com-
mon and unique species would benefit from being studied in a 
shared framework. Functional uniqueness can represent adapta-
tions to specific environmental conditions (e.g., reduced physical 
capacity for dispersal for flightless birds on islands due to the is-
land syndrome; Wright et al., 2016), distinct alternative phenotypic 
adaptations to the same environmental challenges (e.g., active dis-
persal vs. in situ drought resistance forms in aquatic invertebrates; 
Osakabe et al., 2014) or competition- driven specialization (e.g., 
morphological and foraging microhabitat specialization in coral 
reef fishes; Brandl et al., 2015), and may thus hold key insights to 
contextualize the functions and evolutionary trajectories of trait 
syndromes	(Munoz	et	al.,	2023), including in the context of species 
redistribution.

5.3  |  Leverage differences across a variety of 
taxa and regions

In addition, geographic and phylogenetic biases in research ef-
fort may impair our ability to comprehend the importance of the 
intrinsic and extrinsic factors relevant to range shifts (Feeley 
et al., 2017; Lenoir et al., 2020). Overrepresentation of temperate 
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species may, for instance, underestimate the vulnerability of 
tropical species that display particular combinations of behavio-
ral and physiological adaptations, such as narrower thermal toler-
ances and lower dispersal abilities (Feeley et al., 2017; Tewksbury 
et al., 2008). Indeed, from an evolutionary perspective, climatic 
variations (from long- term geological to annual seasonality or 
daily fluctuations) in the tropics are very different from the ones 
in the temperate zone or at higher latitudes, with important 

implications for shaping the current distribution, traits, and ge-
netic diversity of species and populations (De Kort et al., 2021; 
Hampe	&	Petit,	2005). These variations can influence their sensi-
tivity and adaptive capacity to climate change (Chan et al., 2016; 
Steele et al., 2019). These types of bias call for more balanced 
comparative approaches across the tree of life and globe, lever-
aging differences across a variety of taxa and regions (including 
less researched taxa and areas as well as between mainland and 
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islands), to better tease apart the relative contribution of intrinsic 
species traits and extrinsic factors to explain species redistribu-
tion (Pinsky et al., 2022). Recognizing that all the challenges can-
not all be resolved at once, we also emphasize the opportunities 
for carefully targeted laboratory and mesocosm studies that can 
more directly focus on the mechanisms at play and improve our 
ability to tease apart the environmental context dependencies of 
range shift–trait associations (e.g., Luhring et al., 2018).

6  |  A PATH TO MOVE FORWARD

As	 the	 scientific	 community	 grapples	 to	 understand	 the	mecha-
nisms behind range shift variability, we demonstrate that the in-
creasing availability of organismal trait databases together with 
fine scale environmental data can pave the way for new insights 
into climate- related range shifts. To support this endeavor, we 
identified a set of four key considerations for future species range 
shift–trait studies.

• Clarifying the mechanistic basis of trait- based approaches: Traits se-
lected based on theory- driven links to range limit- specific shifts 
(e.g., Visakorpi et al., 2023) as opposed to traits with vague or 
conflicting connections with range shifts have more potential to 
resolve	the	underlying	mechanisms	of	range	shifts.	As	the	field	of	
species redistribution research matures, opportunities emerge to 
refine our conceptualization of the range shift processes for ex-
ample by exploring the stage- dependent processes during range 
expansions	and	contractions	(e.g.,	Monaco	et	al.,	2020). If appro-
priate, the methodology should be suitable for syndrome- based 
hypothesis testing (e.g., using partial least squares regression; 
Carrascal et al., 2009) and be adapted to account for potential 
nonlinear	responses	(Stenseth	&	Mysterud,	2002).

• Fill gaps in trait databases for key categories: The most important 
traits to explain species responses to climate change may not al-
ways match with the restrictive suite of traits available in large trait 
databases	(Green	et	al.,	2022; Kühn et al., 2021). Recent efforts to 
address this limitation include standardized metabolic traits across 
animal	groups	 (AnimalTraits:	Herberstein	et	al.,	2022), tempera-
ture	tolerance	limits	across	ectotherms	(e.g.,	GlobTherm:	Bennett	

et al., 2018; but see Clusella- Trullas et al., 2021 for a discussion 
on the limitation of thermal sensitivity indices), dispersal traits for 
vascular plants (Lososová et al., 2023) and standardized diet and 
morphological	information	for	birds	(Hurlbert	et	al.,	2021; Tobias 
et al., 2022). To the extent possible, accounting for sources of in-
traspecific variation (particularly considering ontogenetic shifts) 
and ensuring that traits are being measured at the correct scale 
and geographic position with respect to the observed range shifts 
may improve the predictive power of traits to explain range shifts. 
Emerging advances in genomics also hold promise to understand 
the role of evolution in facilitating or hindering range shifts (e.g., 
Capblancq et al., 2020; Razgour et al., 2019), and could be used 
alongside trait- based approaches.

• Identifying interactions between intrinsic species traits and extrinsic 
factors: Identifying the general determinants of range shifts that 
transcend any environmental context dependencies requires 
careful integration of a series of abiotic and biotic factors (both 
natural and anthropogenic) in analytical frameworks that explicitly 
include interactions with species traits (e.g., Bertrand et al., 2016; 
García	Molinos	et	al.,	2022; Platts et al., 2019). This can be further 
improved by simulation experiments conducted from mechanistic 
models	(e.g.,	as	done	above	or	in	Henry	et	al.,	2014). In addition, 
there is much to be learnt by studying range shifts in a community 
context (Lavergne et al., 2010), including through the lens of in-
vasion biology by exploring the role of biotic resistance based on 
key	functional	traits	(e.g.,	Miller	et	al.,	2023).

• Accounting for the effects of different methods used to assess range 
shifts and reducing research biases: The influence of the estimation 
process on range shift detection is increasingly recognized and 
would benefit from being explicitly accounted for when trying to 
make inference on the role of species traits in large cross- taxa 
analyses (e.g., Brown et al., 2016; Dahms & Killen, 2023; Lenoir 
et al., 2020). This is especially true as the choice and effect of 
methodological factors may covary with species traits (e.g., when 
species detectability varies with life history or behavioral traits), 
ultimately decreasing our power to explain range shifts. Last 
but not least, reducing functional, phylogenetic, and geographic 
research biases will provide the ability to draw more definitive 
conclusions regarding the shape and direction of range shift–trait 
associations.

F I G U R E  4 Revealing	the	explanatory	power	of	species	traits	on	the	velocity	of	range	shifts	through	interaction	effects	between	species	
traits and climate exposure: (a, c, e) trailing edge contraction and (b, d, f) leading edge expansion. Dots in panels (a–d) are the outputs of 
a process- based model used to simulate the distribution of virtual animal species defined by different combinations of lifespan [x- axis in 
panels (a, c)] and maximal dispersal distance [x- axis in panels (b, d)] under different climate warming scenarios. The curves in panels (a, b) are 
from models fitted between the velocity of range shifts (i.e., the response variable) and species traits (lifespan or dispersal ability) without 
considering the velocity of isotherm shifts, while in panels (c, d) they are from models that consider the interaction between species traits 
and the velocity of isotherm shifts. The color scale in panels (c, d) indicates the velocity of isotherm shifts used in the simulations, with the 
vertical colored bars next to it illustrating the range of climate velocities reported for different climate change Representative Concentration 
Pathways	(purple:	RCP	2.6	and	brown:	RCP	4.5)	in	the	marine	(light	colors)	and	terrestrial	(dark	colors)	realms,	where	the	triangles	indicate	
the	median	values	(according	to	Asamoah	et	al.,	2021;	Brito-	Morales	et	al.,	2020; Trisos et al., 2018). The animal silhouettes in panels (c, d) 
illustrate	examples	of	lifespans	(AnAge	database:	De	Magalhães	&	Costa,	2009) and maximum dispersal distances (butterfly: Sekar, 2012, 
frog:	Smith	&	Green,	2005, common brushtail possum, horn shark and pinnated grouse: Jenkins et al., 2007) reported in the scientific 
literature. Panels (e, f) show Venn diagrams decomposing the proportion of explained variance (R2) between the single and interactive 
effects of species traits and the velocity of isotherm shifts on the velocity of range shifts.
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By implementing these considerations in future research, we ex-
pect that the importance of traits will become clearer for explaining 
the ongoing redistribution of life on Earth in different places and sit-
uations. Trait- based approaches could then provide a powerful basis 
for generalizing knowledge and predictions far beyond the relatively 
small fraction of species for which observations exist and for de-
veloping effective strategies that support biodiversity conservation 
under climate change.
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