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Focusing on Object Extremities for Tree Instance
Segmentation in Forest Environments

Robin Condat1, Pascal Vasseur2 and Guillaume Allibert3

Abstract—As part of the development of many robotic systems
for the forestry sector, forest scene understanding requires the
use of computer vision algorithms. However, this dense and
unstructured environment is complex and puts conventional
detection approaches to the test. In the case of tree instance
segmentation, the presence of closely spaced or even intertwined
trees, their highly variable shapes, and complex masks due to
their branches and leaves are just some of the challenges to
be overcome. For this, specific learning of tree boundaries is
required to better distinguish one from another. In this paper,
we propose ConvexMask, a convolutional neural network for
real-time instance segmentation. ConvexMask opts for a label
representation approach with a convex exterior polygon, defined
by tree extremities, and a binary mask to handle the detail and
occlusions that the label may contain. Experiments conducted on
the SynthTree43k dataset show that ConvexMask distinguishes
tree extremities better than state-of-the-art networks, resulting
in better-quality masks. The code is available at https://github.
com/rcondat/convexmask

Index Terms—Deep Learning for Visual Perception, Robotics
and Automation in Agriculture and Forestry

I. INTRODUCTION

COMPUTER vision algorithms are essential for forest
scene understanding, which is a key step in the develop-

ment of robotic systems for the forestry sector. They enable the
extraction of important information for many tasks in this field,
such as mapping [1], navigation [2], species classification [3],
tree felling [4], log transportation [5] or forest fire detection
[6]. For most of these applications, tree detection is mandatory,
making it a major task. As a result, a great deal of work has
been carried out on the subject in order to achieve accurate
and reliable tree detection in real-time. Even so, the forest is a
complex, dense, and unstructured environment. Conventional
detection approaches are therefore challenged in this new
context, requiring new approaches.

For many applications, tree detection is limited to trunk
detection only. This task is simpler because the trunk itself
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2Pascal Vasseur is with Université de Picardie Jules Verne, MIS, France
(e-mail: pascal.vasseur@u-picardie.fr)

2Guillaume Allibert is with Université Côte d’Azur, CNRS, I3S, France
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is easier to identify than the whole tree. However, in the
context of forest navigation and mapping, it is necessary to
detect trees in their entirety to better situate them in a 3D
environment and identify navigable areas. As the environment
is very dense, precise identification of tree contours is crucial.
Instance segmentation is then a computer vision task adapted
to meet these constraints. To do this accurately and in real-
time, deep learning algorithms like Convolutional Neural Net-
works (CNN) are required.

Despite the very high accuracies achieved by deep learning
algorithms on reference benchmarks, improvements are still
needed for the instance segmentation of whole trees in forest
scenes. Firstly, in our mapping context, these algorithms need
to run on embedded systems, requiring lightweight neural
networks. Secondly, trees are generally composed of branches
and leaves, making them objects with a complex mask, as
shown in Fig 1. Finally, in a forest environment, trees are
often very close together or even superimposed on each other,
complicating the identification of their contours.

To overcome these problems, our approach focuses on the
label representation of object ground truth. Each CNN has
its own label representation l′GT for its training, produced
from the same ground truth lGT of the training dataset. For
instance segmentation, the original labels lGT are in the form
of a set of binary masks for each object. The vast majority
of instance segmentation CNNs encode these ground truths
in the form of a bounding box combined with a compressed
binary matrix for each object (l′GT = (BGT ,MGT )), as
illustrated in Fig. 1b. These networks first detect objects by
predicting their bounding box coordinates and then segment
the selected regions to produce the final masks. Consequently,
it is essential to have good bounding box prediction to ensure
proper downstream object segmentation. However, due to the
high density of the forest environment, several trees could
have almost identical bounding boxes. It is then difficult to
differentiate them, resulting in missed detections.

An alternative approach focuses on object contours by
representing masks as polygons (l′GT = (PGT )), as shown in
Fig. 1c. Trees are no longer characterized by 4 coordinates but
by a set of points. One of the main advantages of using poly-
gons is that each tree is easily distinguishable from another.
Nevertheless, in our context, trees have ground truth masks
with many occlusions or are divided into several parts, like
the red tree in Fig. 1c. Therefore, representing ground truth
with a unique polygon means that annotations are sometimes
too coarse. In addition, the encoding parameters are difficult
to define since the polygon must have enough vertices to
faithfully represent the ground truth without having too many

https://github.com/rcondat/convexmask
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(a) (b) (c) (d)

Fig. 1. Different representations of instance segmentation labels: (a) Original Image (b) Bounding box + binary mask representation (c) Polygon representation
(d) Convex exterior polygon + binary mask representation.

so that the polygon is not too complex.
To better characterize the tree’s extremities, our work

has focused on using a convex polygon encompassing the
ground truth mask, as illustrated in Fig. 1d. This convex
polygon comprises far fewer vertices while describing the
object’s location better than bounding boxes. However, it
cannot represent ground truth independently and must be
combined with a compressed binary mask to manage oc-
clusions and tree features better. In this way, we design
ConvexMask, a CNN for real-time instance segmentation,
representing labels with an exterior convex polygon and a
binary matrix (l′GT = (CGT ,MGT )). ConvexMask detects
object extremities upstream with the prediction of a convex
polygon, then segments within it to obtain a final mask. With
this label representation, we propose Circular Centerness, a
sample weighting function adapted to objects with a particular
shape, as well as NMS Convex, a post-processing algorithm
that takes advantage of convex polygons to eliminate duplicate
detections, while better handling highly overlapped objects.
Experiments carried out on the SynthTree43k dataset [4]
demonstrate the effectiveness of our method, which achieves
better detection and segmentation accuracies than state-of-the-
art CNNs. Lastly, we qualitatively test ConvexMask trained on
synthetic data for prediction in real forest environments.

II. RELATED WORK

Tree detection via computer vision is a subject of study that
has had a resurgence of interest in recent years. Numerous
studies have proposed tree detection solutions for a variety
of applications. These range from species classification [3],
[7] to log transport [5], forest mapping [1] as well as fuel
detection for preventing forest fires [8], [9], [10]. As a result,
the proposed methods focus on certain parts of the tree to
be detected, thus extracting the information useful for their
application. Where Wang et al. [11] and Fortin et al. [5]
will focus on detecting only the trunk of the tree, Russell
[8] will identify tree tops in aerial views. Viewpoints also
differ according to the robots used for application: drones [12]
or Unmanned Ground Vehicles (UGV) [13], [14], to name
but a few. The diversity of approaches is also reflected in
the sensors used. Wang [7] uses point clouds from Terrestrial
Laser Scanning (TLS) for tree isolation and hardwood classifi-
cation. Itakura and Hosoi [13] perform 3D tree detection from
spherical 360° images. In [9], Mendes et al. use RGB images
for forest vegetation detection and classification. Finally, tree

detection takes a variety of forms. These include bounding
box detection [9], 2D segmentation on RGB images [13] or
3D segmentation on point clouds [15], as well as approaches
combining 2D detection and 3D reconstruction [11]. Of all
these approaches, however, we note that the vast majority do
not detect the tree in its entirety. The main reason for this is
that the nature of the applications for which these methods
are intended does not require them to detect the whole tree.
Furthermore, compared with detecting the tree trunk, the task
is much more complex.

To be able to detect trees in their entirety, the use of
forest scene datasets is necessary. Thanks to the upsurge in
forest analysis, numerous datasets have been created, propos-
ing data in various modalities (RGB image, LiDAR, ther-
mal images, stereovision, GPS, etc.) captured from different
viewpoints. Grondin et al. [4] introduced SynthTree43k, a
synthetic dataset for tree trunk instance segmentation, built
from simulated forest environments under various seasons.
The dataset comprises 43k samples, with an RGB image and
depth map generated, and 162k trees of 17 different species
are annotated. SynthTree43k also provides whole-tree labels,
although no experiments with these labels have been carried
out to date. da Silva et al. [16] propose ForTrunkDet, a dataset
of 2029 RGB images and 866 thermal images acquired in
three different Portuguese forests, and bounding boxes for tree
trunk detection. The FinnWoodlands dataset [17] comprises
5170 samples consisting of stereo RGB images, sparse depth
maps, and LiDAR point clouds of Finnish forest scenes.
300 samples comprising 4226 tree trunks are annotated for
panoptic segmentation. To the best of our knowledge, there
are no real datasets with labeled whole trees for detection
or segmentation. This is due to the nature of the targeted
application, but also to the complexity of labeling the whole
tree (branches, leaves).

III. CONVEXMASK

In this section, we introduce ConvexMask implementation.
We first introduce its overall architecture. Then, we detail the
encoding process for converting tree masks into labels for
ConvexMask. Next, we present the loss functions used to train
the network. Finally, we introduce NMS Convex, a specialized
post-processing algorithm for ConvexMask.

A. Architecture
ConvexMask is an anchor-free network based on FCOS [18]

architecture and decomposing instance segmentation into two
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Fig. 2. ConvexMask architecture. H and W are, respectively, the height and width of feature maps, C is the number of classes, R is the number of rays for
a convex exterior polygon, and K is the number of prototypes.

parallel sub-tasks. Its architecture, shown in Fig. 2, consists of
a backbone, linked to a Feature Pyramid Network (FPN), to
produce multi-scale feature maps. Then, image segmentation
is performed via a protonet, predicting k prototype masks
independently of instances, following Yolact [19] segmentation
strategy. In parallel, tree detection is handled by a prediction
head, which produces convex polygons in polar format. It is
composed of 4 branches to predict for each instance its class,
its centerness, its convex exterior polygon, and k coefficients
associated with the prototypes for mask assembling.

B. ConvexMask segmentation

In this section, we detail the ConvexMask segmentation
process, based on the polar representation introduced with
PolarMask [20]. This representation defines a polygon from
a center (xc,yc) and N rays with a fixed angle interval ∆θ.
As a result, the convex polygon prediction is formulated as
instance center classification and dense distance regression in
a polar coordinate.

1) Convex Exterior Polygon: Starting with a mask instance,
the first step is to define the convex exterior polygon. Edge
detection is applied to the mask using the algorithm [21],
producing one or more highly detailed contours. From these
contours, the Sklansky algorithm [22] is applied to obtain
a convex hull that encompasses all previous contours. This
convex hull has the advantage of being less detailed, where its
vertices are instance extremities, making it an easier polygon
to learn. Moreover, this convex hull is guaranteed to contain
our entire instance mask. In our context, each convex polygon
contains a tree, as shown in Fig. 3b, which can be split into
several parts or partially outside the image. It is important
to specify that this convex contour does not define the mask
instance but a zone that will then be segmented.

2) Instance center: As mentioned earlier, the convex poly-
gon of the instance is defined by a center (xc,yc). There are
several ways to define this center, such as the bounding box

center or mass center. We aim to have a center such that the
distances between it and the vertices of the convex polygon
vary as little as possible. Therefore, we chose the mass center,
shown in Fig. 3b, as adopted by PolarMask [20]. One of the
advantages of using convex polygons is that we are sure that
their mass center lies within them.

3) Instance samples: For any location (x,y) included in
a ground truth convex polygon, we are able to calculate the
latter in polar format. Therefore, location is considered as
a positive sample if it falls into any ground-truth convex
polygon. Otherwise, it is a negative sample. This makes it
possible to have several positive samples for a single instance,
thus preventing small objects from having no positive sample
at all and being ignored.

4) Circular Centerness: The principle of centerness [18]
is to weigh the samples during the learning process in order
to focus the network on the most relevant samples. For
polygon prediction, PolarMask proposed Polar Centerness,
calculated according to polygon rays in polar format. Given a
set {d1, d2, ..., dn} for the length of n rays of one instance,
Polar Centerness is defined as follows:

Polar Centerness =

√
min({d1, d2, ..., dn})
max({d1, d2, ..., dn})

(1)

With Polar Centerness, the closer the rays dmin and dmax,
the higher the sample centerness. However, this definition has a
major drawback: if the object polygon is thin (i.e. tree trunk),
each associated sample will have a considerable difference
between its dmin and dmax, resulting in very low centerness
scores. For this reason, we believe that centerness should not
be defined according to the polygon shape.

To remedy this problem, we propose Circular Centerness,
which aims to give a location a centerness score according to
its distance from the ground truth’s mass center C. For each
sample P , its centerness is defined as follows:
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(a) (b) (c) (d)

Fig. 3. Representation of different stages in the label encoding process of one tree : (a) Original Image (b) Ground Truth binary mask with its convex exterior
polygon and mass center (c) Instance centerness with scores between 1 (red) and 0 (blue) (d) Ground Truth binary mask with its encoded convex polygon
with N = 36 rays.

Circular Centerness =

√
1− dP,C

dmax
(2)

where dP,C is the euclidean distance between sample P and
center C, and dmax the maximum euclidean distance between
center C and each polygon vertex. With this definition, the
closer the sample P is to the center of the instance C,
the higher the centerness. Fig. 3c shows the centerness of
each point included in the convex polygon of our example
tree. Negative samples have a default centerness of zero.
The advantage of Circular Centerness is a simpler definition,
independent of polygon shape, better suited to objects with
particular shapes like thin trees.

5) Distance regression: Given a positive sample (x, y) and
the convex polygon of an instance, the N rays are calculated
as follows:

• The vector P of size N is initialized to zero.
• For each point pi of the convex polygon, their distance

di and angle αi from the sample center are calculated.
• Each distance di is assigned to the corresponding angle

of the polygon vector closest to αi. If two distances are
assigned to the same angle, we choose the greatest.

• For all angles of the polygon vector with an unassigned
distance, we calculate their corresponding distance via
interpolation with the distances to the nearest angles.

• Polygon distances that are zero, are set to a minimum
value of 1e-6.

The construction of this convex polygon in polar format
with N = 36 rays is shown in Fig. 3d. Depending on
the number of rays N defined for the polygon, encoding
may produce a polygon that does not entirely encompass the
instance mask. If the N value is too low, some extremities of
the convex polygon associated with an angle of the polygon
vector will be offset by several degrees, creating a less precise
polygon. This phenomenon has been taken into account when
assembling the mask.

6) Mask assembling: For each location (x,y), during in-
ference, the network predicts its classification, centerness, N
rays, and k coefficients associated with the prototypes. Final
confidence scores are obtained by multiplying centerness and
classification. For each FPN level, the 1k locations with the
highest confidence scores are retained, and a threshold is
applied to select only the top predictions. Convex polygons

of these top predictions in the Cartesian plane are constructed
via the (x,y) location and the N predicted rays. Next, a post-
processing algorithm is applied to eliminate duplicates and
produce our final predictions.

For each of these final predictions, the corresponding k
coefficients are used to create a binary mask via linear com-
bination with the generated prototypes. This mask is finally
cropped with the predicted convex polygons, producing final
instance masks. Unlike the bounding box, the convex polygon
has a smaller area while still containing the instance mask,
reducing segmentation errors due to a nearby similar object.
To take into account the accuracy error of the convex polygon
due to encoding, convex polygon rays are enlarged by 10% to
ensure that they fully encompass our instance.

C. Losses
The loss function used for ConvexMask training is defined

as follows:

L = λclsLcls + λpolyLpoly + λmaskLmask + λcentLcent (3)

We use focal loss [23] for the classification loss Lcls, polar
IoU loss [20] for the polygon loss Lpoly (i.e. the loss to
regulate the learning of the convex exterior polygon), and the
binary cross entropy for the mask loss Lmask, calculated in
the same way as Yolact [19].

For centerness learning, the loss function often used is
binary cross entropy [20], [18], defined as follows:

BCE(y, ŷ) = − 1

N

N∑
i=1

yi.log(ŷi) + (1− yi).log(1− ŷi) (4)

where yi and ŷi are the centernesses of ground truth and
prediction respectively. However, this loss function is initially
designed for binary labels, whereas centerness is a floating
score ranging from 0 to 1. Consequently, binary cross entropy
does not tend towards zero in this context. To remedy this
problem, we defined our centerness loss as follows:

Lcent(y, ŷ) = − 1

N

N∑
i=1

log(1− |yi − ŷi|) (5)

In this way, the loss function is zero when the prediction is
equal to the ground truth. To balance our losses functions, we
have set empirically λcls, λmask, λcent to 1 and λpoly to 2.
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(a) (b)

Fig. 4. Two close trees and the intersection (in yellow) of their bounding
boxes (a) and convex polygon (b).

D. NMS Convex

At the output of the prediction head, we perform Non
Maximum Suppression (NMS) to remove duplicate detections,
like many instance segmentation networks. The NMS criterion
for deleting duplicate detections is the intersection of the
union (IoU) of bounding boxes, which is quick and easy to
calculate. However, there may be objects with different masks
but very similar bounding boxes. NMS then risks deleting one
of them with this criterion. Fig. 4a shows an example of two
different trees whose bounding boxes have a high IoU (60.5
%). Variants of NMS also exist, calculating the IoU of masks.
On the other hand, this operation is more energy-intensive,
greatly slowing down inference speed.

With convex polygon prediction, we propose NMS Convex,
which is a variant of NMS with the IoU of convex polygons as
the deletion criterion. Since convex polygons better describe
the instance’s locations than bounding boxes, the intersection
of two instances of convex polygons is closer to the real
instance intersection. Compared to classic polygons, the cal-
culation of the intersection of two convex polygons is easier
thanks to one property of convex polygons: the intersection of
two convex polygons also forms a convex polygon. Fig. 4b.
repeats the previous example, displaying this time the IoU of
their convex polygons, which is much lower (16.6 %). The IoU
of convex polygons is calculated in polar format, so there is no
loss of precision whatever the size of the polygons. However,
the process remains slower than for bounding boxes. To reduce
this gap, the IoU of bounding boxes is calculated upstream, so
that only the IoU of convex polygons whose bounding boxes
have an IoU greater than 10 % is considered.

IV. EXPERIMENTS

We present segmentation instance results on the Syn-
thTree43K [4] benchmark, with whole tree labels. The dataset
contains 40k synthetic images for training, 1k images for
validation and 2k images for testing, with a total of more
than 162k annotated trees. Each instance has the unique label
tree, and its mask includes the entire tree, taking into account
occlusions with other instances or the background.

TABLE I
IMPACT OF CONVEX POLYGON NUMBER OF RAYS ON CONVEXMASK

PERFORMANCES. THE BEST SCORES ARE SHOWN IN BOLD.

RAYS APB APB
50 APM APM

50

18 61.2 90.2 35.8 74.0
36 65.7 90.6 36.7 75.0
72 66.4 90.8 37.2 75.5
120 66.2 90.9 36.9 74.9

TABLE II
IMPACT OF IMAGE SIZE ON CONVEXMASK PERFORMANCES AND SPEED.

THE BEST SCORES ARE SHOWN IN BOLD.

IMAGE SIZE APB APB
50 APM APM

50 FPS
640× 360 61.2 89.2 28.8 69.3 36.5
960× 540 64.8 90.8 34.4 74.1 34.2
1280× 720 65.7 90.6 36.7 75.0 31.6

TABLE III
IMPACT OF CENTERNESS DEFINITION ON CONVEXMASK

PERFORMANCES. THE BEST SCORES ARE SHOWN IN BOLD.

VAL SET THIN SET
CENTERNESS

APB APM APB APM

Polar 66.0 37.1 59.9 40.5
Circular 65.7 36.7 63.3 43.0

TABLE IV
IMPACT OF POST-PROCESSING ALGORITHM ON CONVEXMASK

PERFORMANCES AND SPEED. THE BEST SCORES ARE SHOWN IN BOLD.

NORMAL OVERLAP
NMS

APB APM APB APM FPS

Original 65.1 36.9 46.4 12.6 34.1
Convex 65.7 36.7 50.8 13.3 31.6

Our models include a ResNet50 backbone [24] (or
ResNet101 if specified), pre-trained on ImageNet. We train
ConvexMask on a single A100 GPU. Stochastic Gradient
Descent (SGD) is used, with an initial learning rate of 1e−2

and a mini-batch of 8 images. Following the 3x learning
strategy [25], ConvexMask is trained for 180k iterations, and
its learning rate is reduced by a factor of 10 at iterations
135k and 165k. Weight decay and momentum are set to 1e−4

and 0.9 respectively. Input images retain their original size
(1280x720), and horizontal flipping is the only method for
data augmentation. We report ablations on the SynthTree43k
validation set (1k images). The metrics used to characterize
network performance are the standard COCO [26] benchmark
metrics, namely the mean Average Precision (AP) and the
mean Average Precision with an IoU threshold of respectively
50 % and 75 % (AP50, AP75). These metrics are applied
for bounding box prediction (B) and mask prediction (M).
It should be noted that ConvexMask bounding boxes are cal-
culated by retrieving the minimum and maximum coordinates
of the predicted mask, in length and width.

A. Ablation study

1) Number of rays: As explained in [20], the number of
rays plays an important role in polygon prediction. Too few
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TABLE V
COMPARISON BETWEEN STATE-OF-THE-ART ALGORITHMS ON SYNTHTREE43K TEST SET. THE BEST SCORES ARE SHOWN IN BOLD.

BACKBONE MODEL APB APB
50 APB

75 APM APM
50 APM

75 FPS

Mask RCNN 64.9 89.4 72.9 28.7 70.0 16.1 28.7
YOLACT 52.1 78.7 58.7 26.9 57.5 21.4 35.0
PolarMask 42.3 84.1 37.1 8.9 38.5 1.2 22.8

SOLO 41.2 81.2 36.8 39.2 80.8 31.5 20.8

Resnet50

ConvexMask 66.8 90.8 75.2 37.3 75.2 32.9 31.6

Mask RCNN 65.2 88.6 73.2 29.1 70.0 16.4 22.5
YOLACT 53.6 79.4 60.8 28.7 60.5 23.6 26.0
PolarMask 44.0 84.9 40.9 9.3 40.3 1.3 19.1

SOLO 40.5 80.4 36.1 38.7 80.5 30.4 17.5

Resnet101

ConvexMask 68.4 91.4 77.1 38.5 76.7 34.7 24.8

rays result in less accurate predictions, while too many saturate
performance. PolarMask experiments showed that 36 rays
were the most appropriate choice. In our context, the convex
polygon designates a segmentation zone, defined with fewer
vertices, theoretically requiring less precision.

Table I shows that the number of rays has an impact on
ConvexMask precision (APB and APM metrics). The best
performance in terms of accuracy is achieved with 72 rays,
separated by a 5-degree angle. The impact of the number of
rays on ConvexMask speed is negligible.

2) Speed vs Accuracy: The choice of input image size
inevitably impacts network performance and inference speed.
Table II shows the speed and accuracy trade-off as a function
of input image sizes. The observed results are quite logical,
but it is interesting to note that the performance gain between
960× 540 and 1280× 720 sizes only affects the accuracy of
predictions, and not the number of trees detected. Frame per
Second (FPS) is indicated on an A100 GPU and corresponds
to total inference time, including post-processing. This shows
that ConvexMask can be run in real time even on large images.
It is important to note, however, that the hardware performance
used to measure inference speed is far from the reality of
embedded system operation. These measurements are only
indicative for comparison between networks.

3) Polar Centerness vs Circular Centerness: As explained
in section III-B4, Circular Centerness has been specially
designed to better support thin objects by defining their weight
independently of the polygon shape. We then compare our
proposal with Polar Centerness on the validation set (VAL
SET), but also on a subset of this set including only thin trees
(THIN SET). Table III shows ConvexMask results according to
the centerness used (Polar Centerness or Circular Centerness)
on these two sets.

On the original validation set, both methods are equally
accurate in terms of bounding box and mask precision. Circu-
lar Centerness, on the other hand, stands out on the thin tree
subset, with significant performance gains (+3.4% in APB and
+2.5% in APM ). This is due to the definition of our proposal,
giving higher centerness scores on the positive samples asso-
ciated with thin trees, thus preventing these proposals from
being ignored in post-processing.

4) NMS vs NMS Convex: NMS Convex aims to avoid
the deletion of highly entangled trees in post-processing by

using the IoU of convex polygons as a deletion criterion, as
explained in section III-D. We compare our algorithm with
NMS on the validation set (VAL SET) and on a subset of
this set comprising only trees with strong overlap with other
ground truth trees (OVERLAP SET). The performance and
speed of ConvexMask as a function of the post-processing
algorithm applied are shown in table IV.

On the validation set, the performance of the two algorithms
is equivalent. However, there is a significant improvement in
bounding box accuracy on the OVERLAP SET (+4.4% in
APB). This can be explained by the fact that fewer trees are
ignored, thus increasing the overall accuracy score. On the
other hand, these unfiltered detections have perfectible masks,
as shown by the difference in mask accuracy, which is more
limited (+0.7 % in APM ). In terms of inference speed, NMS
Convex is inevitably slower than NMS, but the difference in
FPS is limited (-2.5 FPS for NMS Convex, corresponding to
an increased inference time of 2.5 ms per image).

B. Comparison against state-of-the-art

We train 5 different networks for comparison on Syn-
thTree43k: Mask R-CNN [27] and Yolact [19], which have a
bounding box + binary mask approach, PolarMask [20] with a
polygon approach, SOLO [28] with a binary mask approach,
and our ConvexMask network with a convex polygon +
binary mask approach. The training parameters for the first
4 networks are exactly the same as those presented in their
respective articles. For a fair comparison, no data augmen-
tation method is used for all networks. Since SOLO and
PolarMask do not produce bounding boxes in their predictions,
these are calculated from the predicted masks, as was done
previously for ConvexMask. The performance of the CNNs
on SynthTree43k test set, with a ResNet50 or ResNet101
backbone, and their FPS, are shown in table V.

First of all, we observe that ConvexMask significantly
outperforms most networks in terms of bounding box accuracy.
Only Mask R-CNN achieves bounding box accuracies close
to, but below, ConvexMask. The reason for this discrepancy
lies in our approach, where ConvexMask focuses upstream on
detecting instance extremities via convex polygon prediction.
This allows us to extract a much more accurate bounding box.
Secondly, in terms of mask accuracy, SOLO slightly surpasses
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Fig. 5. Predictions of Mask R-CNN, Yolact, PolarMask, SOLO, and ConvexMask on SynthTree43k test set.

ConvexMask, both ahead of the three other CNNs. However,
SOLO remains a larger network than ConvexMask, which
impacts its inference speed. Moreover, ConvexMask predicts
fewer tree masks correctly, as shown by the differences in
performance on the APM

50 metric, but these are more accurate
in general, as shown by the higher scores of ConvexMask
compared to SOLO on the APM

75 metric. We note that the
largest trees are those that suffer most from poor segmentation.

This shows that there is still room for improvement in
ConvexMask’s segmentation phase. Finally, ConvexMask’s
inference speed is on par with other state-of-the-art networks.

Fig. 5 shows CNNs prediction results on some example
images from the SynthTree43k test set. First of all, Con-
vexMask detects tree extremities fairly accurately with the
convex exterior polygon, creating a better segmentation zone
compared with Yolact, reducing segmentation errors linked to
trees being too close (cf. red tree in the first example image).
The use of NMS Convex means that trees that are too close
to each other are less ignored, as in the case of the fourth
example image, compared to Yolact and PolarMask. Regarding
segmentation, ConvexMask and SOLO produce similar masks.
However, ConvexMask produces a more accurate segmenta-
tion than SOLO, particularly on tree trunks.

C. Prediction on real images

We test ConvexMask on real images to assess its transfer-
ability. To do this, we take as our base a ConvexMask network
with a ResNet101 backbone, fully pre-trained on the COCO
dataset [26], and we freeze the backbone weights in order to
preserve the learning achieved on real images. We fine-tune
our network solely on SynthTree43k following the 6x strategy
[25], that is to say during 360k iterations with a learning
rate decay at iterations 270k and 330k. We use several data
augmentation methods, such as horizontal flipping, saturation,
sheering, rotation, and image resizing, to improve model

generalization. Qualitative results on synthetic images (from
video sequences outside SynthTree43k) and real images are
shown in Fig. 6. ConvexMask was also demonstrated on videos
of synthetic and real forest scenes1.

On synthetic data (excluding SynthTree43k), ConvexMask
detects the majority of trees. However, predicted convex poly-
gons are coarser and tend to include a larger area than the tree
itself. We believe this is due to the texture of the tree leaves,
which differs between the synthetic input images and those
of the training dataset. Downstream, the final segmentation
produces correct masks, although there is still room for
improvement. Nonetheless, prediction in real-life conditions
gives less qualitative results. The two real-life images in figure
6 show some interesting initial results. However, the quality
of the predictions depends on many parameters: viewpoint,
forest density, tree species, or brightness, to name but a few.
Learning on synthetic data, therefore, shows limitations for
real-world operation, as [8] and [4] relate. This transfer from
synthetic to real-world is all the more complex for whole-
tree detection and segmentation, requiring more varied data to
adapt to the multiple forest environments possible. To remedy
this, work on unsupervised learning, which does not require a
fully labeled dataset, and on domain adaptation, which enables
learning on synthetic data to be applied to real data, should
be considered.

V. CONCLUSION

In this paper, we presented ConvexMask, a neural network
for instance segmentation that focuses on object extremities.
Through various experiments carried out on SynthTree43k,
ConvexMask is able to handle several problems related to
forest scenes: trees that are too close together, very complex
masks, and very blurry tree extremities. The approach, based

1This paper has a supplementary downloadable video available at
http://ieeexplore.ieee.org, provided by the authors.
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Fig. 6. Prediction on synthetic (the first three on the left) and real (the last two on the right) images.

on predicting a convex polygon of the instance and then
segmenting it, outperforms most state-of-the-art networks in
terms of accuracy while running in real time.

However, there are still improvements needed in order to
be able to predict in real-life conditions. We believe that
the major improvement to be made to ConvexMask lies in
its segmentation process via its protonet, which will produce
more correct masks, especially for large objects. Next, work on
domain adaptation is required to transfer learning to synthetic
data for real-world applications. Finally, for the purposes of
forest mapping and navigation, depth estimation should be
integrated into ConvexMask. Through a depth modality, this
new task would not only enable trees to be located in 3D
space but also better differentiate trees from others from the
camera’s point of view.
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