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laws analysis at low frequency 

Olivier Maloberti 
UniLaSalle Amiens, 14 Quai de La Somme, 80080 Amiens, France   
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A B S T R A C T   

Ferromagnetic materials show magnetic structures with domains and walls. Thanks to decades of research 
regarding the origin and behaviour of magnetic domains, we now possess a general foundation which has been 
verified experimentally in single crystals and powders. The governing equations at the microscopic scale were 
built in the 1960 s when Brown published calculations of the magnetic moments distribution inside domain 
walls. This micromagnetic theory uses the so called LLG ‘Landau-Lifshitz-Gilbert’ equation and can include the 
damping effects. The LLG equation requires a coupling to the field derived from energy contributions: exchange, 
anisotropy, magnetostriction, stray-field … and the anti-eddy field. At the macroscopic scale, such behaviours are 
lumped in a homogenized magnetization law for the electromagnetic field equations inside larger polycrystals. 
Therefore, the inhomogeneous magnetic material nature is always ignored. The Tensor Magnetic Phase Theory 
(TMPT) describes the magnetic structure and the magnetization thanks to a tensor variable at a mesoscopic scale. 
The material structuring is then explained thanks to an energy balance which will be discussed. 

This paper presents the results of investigations on entangled relationships between the micromagnetic theory, 
the electromagnetic theory and what is called the Tensor Magnetic Phase Theory (TMPT), which statistically 
describes the magnetic structures of soft ferromagnetic materials. It examines a connection between the TMPT 
and the LLG by deriving the main energy terms. Then, the TMPT must stay compatible and coupled to the 
Maxwell equations at low frequencies with volume and surface connections. Additionally, this paper investigates 
the way to derive the domains structuring and magnetization laws through the Lagrange principle and the 
corresponding conservation laws with invariants linked to the Nœther theorem. Finally, the TMPT must be 
discussed while checking its coherence and formulation when changing the reference frame.   

GLOSSARY (main symbols used in this paper)  

Symbols Descriptions 

γ gyromagnetic factor [C.kg-1] (γ= 28 THz.T- 

1 for the electron) 
g Landé factor [n.u.] (g ≈2 for the electron) 
fL Larmor frequency (fL = γ.B/(2π)) 
μB Bohr Magnetron [A.m2] (μB = 9.27.10-24 

A.m2) 
h Planck constant [J.s] (h = 6.62.10-34 J.s) 
ℏ h/(2π)
Zc number of atoms per lattice cell [n.u.]  

(continued ) 

Symbols Descriptions 

d s→ spins of electrons [n.u.] 
d μ→ magnetic moment [A.m2] 
m→ nanoscopic magnetization [A.m-1] 

h
→

eff 
local efficient magnetic field [A.m-1] 

h
→

eff = hex
̅→

+ han
̅→

+ hs
→

+ h
→

+ hdm
̅→

+

hed
̅→

+ h
→

(ex: magnetic exchange, an: magneto- 
crystalline anisotropy, λs: stress induced 
anisotropy, λε: self magneto-striction, dm: 
stray field demagnetization, ed: eddy 
currents) field [A.m-1] 

h
→

and H→ magnetic excitation field at the nano and 
macroscale [A.m-1] 

(continued on next page) 

E-mail addresses: olivier.maloberti@unilasalle.fr, olivie.maloberti@gmail.com.  

Contents lists available at ScienceDirect 

Results in Physics 

journal homepage: www.elsevier.com/locate/rinp 

https://doi.org/10.1016/j.rinp.2024.107727 
Received 31 August 2023; Received in revised form 29 March 2024; Accepted 2 May 2024   

mailto:olivier.maloberti@unilasalle.fr
mailto:olivie.maloberti@gmail.com
www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2024.107727
https://doi.org/10.1016/j.rinp.2024.107727
https://doi.org/10.1016/j.rinp.2024.107727
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2024.107727&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results in Physics 62 (2024) 107727

2

Introduction 

Ferromagnetic materials show magnetic structures with domains and 
walls [1–7]. Thanks to decades of research regarding the origin and 
behaviour of magnetic domains, we now possess a general foundation 
which has been verified experimentally in single crystals and powders 
[8–15]. The governing equations at the microscopic scale were built in 

the 1960s when Brown published calculations of the magnetic moments’ 
distribution inside domain walls [19–22]. This micromagnetic theory 
uses the so called “Landau-Lifshitz-Gilbert” equation (LLG) and can 
include the damping effects [23]. The LLG equation requires a coupling 
to the field derived from energy contributions: exchange, anisotropy, 
magnetostriction, stray-field … and the anti-eddy field. At the macro-
scopic scale, such behaviours are lumped in a homogenized 

(continued ) 

Symbols Descriptions 

e→ and E→ electrical excitation field at the nano and 
macroscale [V.m-1] 

b
→

and B→ magnetic induction or flux density at the 
nano and macroscale [T] 

m→ and M→ magnetization at the nano and macroscale 
[A.m-1] 

γ→ and J→ magnetic polarization at the nano and 
macroscale [T] 

[
Λ2] tensor magnetic phase variable [m2] 

φ→ elementary magnetic flux vector associated 
to 
[
Λ2] [Wb] 

ε0 dielectric permittivity of vacuum or air [F.m- 

1] (ε0 = 8.85.10-12 F.m-1) 
μ0 magnetic permeability of vacuum or air [H. 

m-1] (μ0 = 4π.10-7 H.m-1) 
σ local electrical conductivity [S.m-1] 
[ν] local magnetic reluctivity at the macroscopic 

scale [m.H-1] 
τb macroscopic time delay of the magnetic flux 

density B [s] 
Ms saturation magnetization [A.m-1] 
Js saturation magnetic polarization [T] (Js =

μ0Ms) 
Aex magnetic exchange constant at the 

nanoscopic scale [J.m.A-2] 
γw integral of nanoscopic walls energy, 

exchange and anisotropy [J.m-2] 
kan Magneto-crystalline anisotropy constant at 

the nanoscopic scale [J.m-3] 
K→an 

macroscopic magnetic anisotropy vector [J. 
m-3], Kan anisotropy constant at the 
macroscopic scale [J.m-3]  

Fig. 1. representation of usual shapes and orientations of magnetic domains in the magnetic structure of classical electrical steels made of iron and silicon SiFe (GOES 
and NGOES) from references [3,28]. 

(continued ) 

Symbols Descriptions 

[λ] tensor of magnetostriction coefficients (see 
appendix 4) [n.u.] 

[s] external stress tensor [Pa] 
λ100 magnetostriction coefficient of a cubic 

crystal along [100] [n.u.] 
λ111 magnetostriction coefficient of a cubic 

crystal along [111] [n.u.] 
Cex magnetic exchange coefficient for the TMPT 

[n.u.] 
Can magnetic anisotropy coefficient for the 

TMPT [n.u.] 
Cλs stress induced magneto-strictive anisotropy 

coefficient for the TMPT [n.u.] 
Cλε self magneto-striction coefficient for the 

TMPT [n.u.] 
Cdm demagnetizing coefficient [n.u.] 
τ mesoscopic time delay of the magnetic 

structuring into domains [s] 

ℓ, L
̅→

and L Lagrangian energy densities for the micro- 
magnetism, TMPT and electromagnetism [J. 
m-3] 

t, T
̅→

and T kinetic energy densities for the micro- 
magnetism, TMPT and electromagnetism [J. 
m-3] 

u, U
̅→

and U potential energy densities for the micro- 
magnetism, TMPT and electromagnetism [J. 
m-3] 

NOTATIONS  
A symbol ξ with thin letters denotes the 

scalar ξ, ξ
→denotes a 3D vector and [ξ]

denotes a 3D tensor.    
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magnetization law for the electromagnetic field equations inside larger 
polycrystals [16–18,24–27]. Therefore, the inhomogeneous magnetic 
material nature is always ignored. The Tensor Magnetic Phase Theory 
(TMPT) describes the magnetic structure and the magnetization thanks 
to a tensor variable at a mesoscopic scale [28]. The material structuring 
is then explained owing to an energy balance which will be discussed. 
This work examines a connection between the TMPT and the LLG by 
deriving the main energy terms. Then, the TMPT must stay compatible 
and coupled to the Maxwell equations with volume and surface con-
nections [28–30,40]. Additionally, this paper investigates the way to 
derive the domains structuring and magnetization laws through the 
Lagrange principle and the corresponding conservation laws with in-
variants linked to the Noether theorem [31,32]. Finally, the TMPT must 
be discussed while checking its coherence and formulation when 
changing the reference frame [33–39]. The main reason for this research 
is the heterogeneity of polarized materials with subdivisions called do-
mains separated by walls emphasized by several physicists in the 20th 
century [1–7]. Investigations of the present work have been initiated in 
[28] by looking first at the usual soft magnetic materials such as Non 
Grain Oriented Electrical Steels (NGOES) and Grain Oriented Electrical 
Steels (GOES). The Fig. 1 gives a schematic representation of several 
kinds of magnetic structures including usual shapes of polarized do-
mains inspired from true images that can be found in the literature [3]. 
Additionally, this kind of considerations may also be applied to other 
polarizations in ferroelectric and multiferroic materials (see § 6.2). 

In the following, the context, brief state of the art and dilemma are 
introduced. The core of the work is dedicated first to the introduction, 
justification and description of the so called Tensor Magnetic Phase 
Theory (or in brief TMPT), then to its relationship or coupling with the 
classical electromagnetism theory, until the derivation of main gov-
erning equations. Before giving some realistic test cases and a short 
discussion on the results, some symmetry and invariance properties are 
looked at. 

From local and deterministic to “Holistic” paradigm 

This work examines a connection between the TMPT and the LLG by 
deriving the main energy terms. 

State of the art and dilemma 

The literature in the field is totally informative at either very small 
dimensions (typically the nanoscale x) or quite larger dimensions (typically 
the macroscale X) (see Fig. 2). The physical description and the corre-
sponding mathematical tools used to study those kinds of materials depend 
on the observation scale. Let’s examine the phenomenon at the different 
space scales, to be often associated to a time or frequency scale (see Fig. 2). 

At atomic scale, the origin and mutual interactions of elementary 
magnetic moments are described through a group of atoms in a lattice cell 
(dΩlattice) or a molecule pattern. The properties such as the saturation 
magnetization, the exchange constant between moments or the anisotropy 
constant are defined [4–6]. The magnetic moments are carried by electrons 
(free or bound, following the models given in [4–7]) and are due to orbital 
moments or spins and to their interactions (spin–orbit coupling [7]). 

At the nanoscopic scale, matter can be viewed as elementary volumes 
with nanoscopic dimensions, containing several magnetic moments, 
that can adopt many different configurations [8–10]. To simplify, the 
spatial distribution of moments can be either uniform (domains) or 
rotational (walls, vortex etc.). 

At the microscopic scale, we start observing at distance the charac-
teristic magnetic structure of a material. The latter depends on several 
microscopic physical properties (metallography, anisotropy, exchange 
etc.) and on the local geometrical discontinuities (interfaces, boundaries 
etc.). Magnetic structures are arrangements of domains and walls or 
other magnetic objects (different types of domains and vortices) 
[11–15]. This comes from a compromise found which minimizes the 
sum of micromagnetic energies including the magneto-crystalline 
anisotropy, magnetic exchange, demagnetizing stray field energy and 
sometimes the magnetostriction. 

At the mesoscopic scale, statistical averaging of several microscopic 
domains and walls is possible as long as the parts contain enough 
metallographic grains. At this scale, statistical tools such as the magnetic 
phase theory [8,16] can be used. The small details inside the magnetic 
structure are neglected and lumped in mean behavioural laws, loss 
models [17,18], included in the electromagnetic field equations [27]. 

The last observation scale is the macroscopic scale, the one of the 
considered entire part or specimen, for which the macroscopic behaviour, 
with the hysteresis loops and losses are observed and measured [17]. 

Fig. 2. State of the Art on the description of electromagnetic properties at different space and frequency scales inside soft magnetic materials with magnetic moments 
and a domains’ structure. 
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At a deeper level, at a nanoscale, micro-magnetism and electro-
magnetism are usually used. Micro-magnetic problems are governed by 
the Landau-Lifschitz-Gilbert equation (LLG) [19–22] associated to the 
Maxwell equations with electromagnetic fields defined at the nano-
scopic or/and microscopic scale(s). Several authors at the beginning of 
the 20th century introduced and developed the Landau-Lifshitz-Gilbert 
equation with conservative and dissipative contributions [23]. It de-

scribes the quasi-static and dynamical behaviour of a single spin ds
→

, 

magnetic moment dμ
̅→

= (gμB/ℏ)ds
→

or microscopic magnetization vector 

m→= (Zc/dΩlattice) dμ
̅→

(|m→| = Ms) within a local effective magnetic field 

heff
̅→

(1) generated by all neighbours, the environment and the magnetic 

field source h
→

. The latter total effective magnetic field is usually written 
as the sum of several magnetic contributions (the quasi-static contri-

butions giving hqs,eff
̅̅̅→

: magnetic exchange between atoms hex
̅→

, magneto- 

crystalline anisotropy han
̅→

, stress induced magnetic anisotropy hλs
̅→

, self 

magnetostriction hλε
̅→

and stray demagnetizing field hdm
̅→

plus the dy-

namic contribution, i.e. the anti-eddy field hed
̅→

) that are at the origin of 
the micro-magnetism [19–23]: 

heff
̅→

= h
→

+ hex
̅→

+ han
̅→

+ hλs
̅→

+ hλε
̅→

+ hdm
̅→

+ hed
̅→

= hqs,eff
̅̅̅→

+ hed
̅→

(1a)  

hed
̅→

= −
α

γMs

dm→

dt
= − η dm→

dt
(1b)  

The time delay constant η = αγ− 1M− 1
s quantifies the average anti-eddy 

field damping throughout the sample [23]. Then the (LLG) Eq. (2) 
tells us that the effective field exerts a magnetic torque: 

1
γ

dm→

dt
= m→∧

(

h
→

eff

)

= m→∧

(

h
→

qs,eff

)

− m→∧

(
α

γMs

dm→

dt

)

→
f≪fL

0→ (2)  

The first term with time derivation is responsible for the Larmor pre-
cession [25,26] at a frequency called the Larmor frequency given by fL =

γB/(2π) with γ = 28.1012≫1. As long as we focus on time varying fields 
with low frequencies (f/fL)≪1, this first term tends towards zero and 
can be neglected. This Eq. (2) is at the basis of the micromagnetic 
behaviour within magnetic domains [19] and walls [22]. 

Part of the dilemma at the nano or microscale, is that the local 

magnetic field h
→

eff , is needed and depends on the space and time dis-
tribution of m→ at very long distance (Maxwell) (probably longer than the 
nanoscale at purpose). As a consequence, the micromagnetic problem 
cannot be solved without implementing the resolution of the micro-
scopic Maxwell equation to find the electromagnetic fields within the 
complex and changeable magnetic structure. Unfortunately, the distri-

bution of m→ can be known only in small areas, insufficient to render the 
interactions at long distance and that is why, the micromagnetic prob-
lems with a solution are limited to very small nano-objects, like a wall or 
a vortex, or nano-crystals. At the intermediate macroscopic scales and 

with low frequencies (f ≪ GHz), homogenized material’s behavioural 
laws and electromagnetic fields in matter are usually used through the 
Maxwell equations without wave propagation [24]. Then the micro-
scopic magnetic structure with domains and walls is ignored and 
undescribed. Therefore, this paper aims to question Physics and de-
mands a congruent solution to this problem. 

Introduction of tensor magnetic phases at a mesoscopic scale 

To make sure we ask the question correctly and that we will have a 
useful answer; let us introduce a phenomenological and “Holistic” way 
[48] to define the magnetization in such a polarized material at a 
mesoscopic scale (x) (quite larger than the crystal size ≫ nm), between 
the nanoscopic and macroscopic scales [28]. To do so, we apply a vol-
ume integral averaging procedure 〈.〉 (3, 4), like in references 
[27,29,30], to express the magnetization M→= 〈m→〉 or polarization J→=

μ0M→= (J1, J2, J3)
T
= 〈 γ→〉 that results from couples of domains α with 

total volume Ωα (Ωα = Ωα↑ + Ωα↓), magnetically saturated in different 
and contradictory directions ↑↓ (mα↑

̅̅→
=+Msuα1

̅→ and mα↑
̅̅→

=− Msuα1
̅→ or 

γα↑↓
̅̅→ = μ0mα↑↓

̅̅ →
= ±Jsuα1

̅→) and with two different volumes Ωα↑ and Ωα↓, 
and effective cross sections in the plane (uα2

̅→
, uα3
̅→

) perpendicular to the 
domains α magnetization direction ±uα1

̅→. 
∑

α
Jα
→(
∫∫∫

Ωα

d3x
)
=
∑

α

(
∫∫∫

Ωα↑

γα↑
̅→d3x −

∫∫∫

Ωα↓

γα↑
̅→d3x

)
(3)  

Let’s use the transfer matrix Tux from the reference frame ( x1
̅→

, x2
̅→

, x3
̅→

)

to the domains frame (uα1
̅→

, uα2
̅→

, uα3
̅→

) such that (Tux)ij = uα i
̅→

• xj
→; and the 

Jacobian matrix [Jxuα ] such that (Jxuα )ij = ∂uα j xi. 

(
[Tuαx]

∫∫∫

Ωα

|Jxuα |d3uα
)
•

⎛

⎜
⎜
⎝

J1

J2

J3

⎞

⎟
⎟
⎠ =

(
∫∫∫

Ωα↑

[Tuαx]|Jxuα |d3uα

−

∫∫∫

Ωα↓

[Tuαx]|Jxuα |d3uα
)
•

⎛

⎜
⎜
⎝

Js

Js

Js

⎞

⎟
⎟
⎠

(4)  

We propose to introduce an original tensor variable called 
[
Λ2] which is 

homogeneous to a squared length to be interpreted as the effective cross 
section of couples of domains relatively to one direction and depending on 
its polarization direction (5). The matrix inverse of this tensor will be 

called 
[
V2] =

[
Λ2]− 1 and when divided by the effective length of domains 

along its magnetization direction, its components can be interpreted as 
the volume densities of walls in the main directions of space [28].  

An elementary flux vector φ→ is also introduced (6) and depends on the 
magnetic saturation Ms or Js and the difference of effective cross sections 
for the two opposite polarizations of neighbouring domains. 

[
Λ2] =

∫∫∫

Ωα
|Jxuα |d3uα
∫

Ωα
duα1

[Tuαx] =

( ∫∫∫

Ωα↑
|Jxuα |d3uα +

∫∫∫

Ωα↓
|Jxuα |d3uα

)

∫

Ωα
duα1

[Tuαx] =
[
Λ2

↑

]
+
[
Λ2

↓

]
(5)   

O. Maloberti                                                                                                                                                                                                                                     
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This holistic way considers the domains shapes and sizes with J→= μ0M→

the average of γ→= μ0 m→ (see appendix 3), called the magnetic polar-
isation (7), which equals the multiplication of the tensor 

[
V2], able to 

render the different magnetic phases for the domains with the elementary 
magnetic flux vector φ→. 

J→(x , t) = μ0M→(x , t) = μ0〈m
→
(x, t)〉x =

[
V2(x , t)

]
φ→(x , t) (7)  

Partial differential properties of 
[
V2] and φ→ are as follow: 

V2
ij =

∂Ji

∂φj
= μ0

∂Mi

∂φj
and φj =

∂Ji

∂V2
ij
= μ0

∂Mi

∂V2
ij

(8) 

There is a connection with the magnetic phase volumes introduced 
by Louis Néel, Landau & Lifschitz or Kittel during the 20th century 
[11,18,21], but with neither any energy formulation nor clear state 
variable proposed yet. Now we propose the question: What would be the 
energy contributions and formulation leading to the governing equa-
tions of such a magnetic structure represented by 

[
V2
]

or 
[
Λ2] and φ→? 

Lagrangian energy densities 

To do so, let’s build each energy contribution with the help of what 
already exists at the nanoscale. The micromagnetic theory represented 
by the Landau-Lifschitz-Gilbert equation (LLG), according to Gilbert 

himself, can be derived from a Lagrangian l [10,23,31] limited to minus 
the internal potential energy u when the frequency is low (quite lower 

than 1 GHz), which provides each field contribution ( h
→

= − ∇
→

m→(u)). 
Each potential energy at the nanoscale is perfectly known as a function 
of m→, involving material properties such as the exchange and anisotropy 
constants and the saturation polarization. 

l = t − u ≈ − u(f≪GHz) (9)  

u = uex + uan + uλs + uλε + udm (10)  

Considering the magnetic structure with domains, it is possible to ex-
press equivalent energy contributions at a mesoscopic scale (11–13), 
involving the new tensor variable 

[
V2] (inverse of 

[
Λ2]) and the flux 

vector φ→ through the magnetization big M→ rather than m→. 

L
̅→

= T
̅→

− U
̅→

≈ − U
̅→

(f≪GHz) (11)  

U
̅→

= U
̅→

ex + U
̅→

an + U
̅→

λs + U
̅→

λε + U
̅→

dm (12)  

We propose then to separate the problem of finding 
[
V2] from the 

problem of finding φ→by defining a vector energy density L
̅→

rather than 
a scalar energy density l , for which each component is obtained by 
fixing the flux direction in the direction of this component only (14) 

(each energy component i is proportional to the derivative of scalar 
energy as a function of the squared φ→ component i). 

U (x , t) = 〈u(x, t)〉x (13)  

U i = J2
s

(
γw

Kan

)4

∂φ2
i
U (14)  

To do so, we need the microscopic magnetic walls energy density γw [J. 
m− 2] and an anisotropy vector K→an = Kan u→an [J.m− 3] (uni-axial case), 
which re-establish the homogeneity. The factor J2

s (γw/Kan)
4 contains 

both the physical dimensions and the microscopic information related to 
the microscopic exchange plus anisotropy energies inside the walls not 
included elsewhere in the TMPT. Each vector potential energy, only 
defined in [28], can then be derived with calculations detailed in the 
appendix 3. 

Magnetic exchange energy 
The first energy contribution is the magnetic exchange one (15), 

proportional to some extent to the squared magnetization rotational for 
the nanoscale, and therefore proportional to the squared 

[
V2] rotational 

for the TMPT (see appendix 2-3 and reference [28]) (notice that the 
rotational of a tensor here remains a tensor, and the product used here 
between two tensors gives a vector, see appendix 1)  

The origin and equivalent formulations of the magnetic exchange can be 
found in the appendix 2. 

Magneto-Crystalline anisotropy 
The second energy contribution is the magneto-crystalline anisot-

ropy (16), proportional for uni-axial cases to the squared sinus of angle 
between m→ and the anisotropy axis u→an. This is translated for the TMPT 
with the squared difference between 

[
V2] and its contraction along the 

anisotropy vector K→an (appendix 3). 

U an = 〈uan〉 = 〈
kan

M2
s

⃒
⃒
⃒
⃒

(

m→∧ u→an

)

∧ u→an

⃒
⃒
⃒
⃒

2

〉⇒ U
̅→

an

= Can
γ4

w
K3

an

⎛

⎜
⎜
⎜
⎝

[
V2] −

⎛

⎜
⎜
⎜
⎝

K→an⋅
(
[
V2
]
⋅ K→an

)T

⃒
⃒
⃒
⃒K
→

an

⃒
⃒
⃒
⃒

2

⎞

⎟
⎟
⎟
⎠

T⎞

⎟
⎟
⎟
⎠

⊙
→2

(16)  

Self Magneto-Striction energy 
Similar techniques can lead to an equivalent expression of the self 

magnetostriction energy …involving the magnetostriction tensor 
[
λ2]

and the stiffness tensor [C] (see appendix 3 and appendix 4). 

U ex = 〈uex〉 = 〈− Aex(m→• Δ(m→) )〉 ̅̅̅→
∇
→

•m→̅̅̅→0
〈Aex|(∇

→
∧ m→)|

2
〉⇒ U
̅→

ex ̅̅̅→
∇
→

• J→̅̅̅→0Cex
γ6

w
K5

an

(
[∇
→
] ×
[
V2] ) ⊙

→2 (15)   

φ→=

(∫∫∫

Ωα↑
|Jxuα |d3uα −

∫∫∫

Ωα↓
|Jxuα |d3uα

)

∫

Ωα
duα1

[Tuαx] •Js •

⎛

⎜
⎝

1
1
1

⎞

⎟
⎠=

( [
Λ2

↑

]
−
[
Λ2

↓

])
•Js • 1→ (6)   
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U λε = 〈uλε〉 = 〈+
9
4
[m→⊗ m→]

M2
s

◦(
[
λ2]∴[C]∴[m

→
⊗ m→]

M2
s

)

〉

⇒ U
̅→

λε = +
9
4

Cλε
γ4

w
K3

an

[
V2]⊙

→

([
λ2]∴[C]

Kan
∴
[
V2]

) (17)  

Stress induced magneto-striction anisotropy 
Similar techniques can lead to an equivalent expression of the stress 

induced magneto-striction anisotropy energy (17), involving the 
magnetostriction tensor [λ] and the stress tensor [s] (appendix 4). 

U λs = 〈uλs〉 = 〈−
3
2
[m→⊗ m→]

M2
s

◦(

[λ]∴[s]∴
[m→⊗ m→]

M2
s

)

〉

⇒ U
̅→

λs = −
3
2

Cλs
γ4

w
K3

an

[
V2]⊙

→
(
[λ]∴[s]
Kan

∴
[
V2]

) (18)  

The operator ∴ is a kind of tensor product between two tensors which 
stays a tensor (see Appendix 1). 

Demagnetizing stray-field energy 
The equivalent demagnetizing energy is minimized at the TMPT level 

by superimposing a non-divergence condition on 
[
Λ2] and 

[
V2] tensors 

(19–20):, from (5) (transfer matrices properties): 

∇
→

•
[
V2] = 0→ (19)  

∇
→

•
[
Λ2] = 0→ (20)  

This non-divergence condition is closely related to an absence of volume 
equivalent magnetic charges given by ∇→• J→→0 inside the volume of the 
material. However, any infringement of this principle due to a local 
magnetization vector and tensor divergence (∇→• J→∕= 0 and 
∇
→

•
[
V2] ∕= 0→) may generate a demagnetizing energy contribution 

∝ −
[
V2]⊙

→
[∇
→
]
(
∇
→⋅
[
V2] ). This term shall be balanced and compensated 

by an opposite magnetic exchange contribution (∝
[
V2]⊙

→
[∇
→
]
(
∇
→⋅
[
V2] )) 

still in order to minimize the total energy. As a consequence and as 
expected, the demagnetizing effects depend mainly on the magnetic 
poles at the surface boundaries through a surface energy term (21) 
involving the domains polarization components perpendicular to the 
surface with normal direction n→. 

U
̅→

dm∝Cdm
K4

an
γ3

w

(
n→⋅
( [

Λ2]⋅ n→
)T
) ⊙
→2

(21)  

Eddy currents’ lost energy 
Finally, we also have to consider a dissipation energy functional (22) 

representing the energy losses due to eddy currents, proportional to the 

squared time derivative of 
[
V2] that involves a time delay parameter τ of 

domains structuring, related to the walls’ mobility with the conductivity 
and permeability inside the domains. 

R
̅→

ed∝
1
2

γ4
w

K3
an

τ∂t
[
V2]⊙

→τ∂t
[
V2] (22)  

Entanglement between magnetic phases and electromagnetic 
fields 

Then, the TMPT must stay compatible to the Maxwell equations with 
volume and surface connections. 

Coupling between the TMPT and the Maxwell equations at borders 

This tensor representation of a magnetic structure is perfectly 
compatible with the classical electromagnetic fields and corresponding 
Maxwell equations [24]. Independent of the medium, the flux density B→

(23) can still be written as a function of the polarization J→ and the 
magnetic field H→. J→ can be written with 

[
V2] and φ→ (7), considering 

[
V2] = [0] for non ferromagnetic materials. The magnetic field H→ (24) 

can still be considered as dependent on B→ through a reluctivity [ν]. 

B→= μ0 H→+ J→ (23)  

H→= [ν].
(

B→+ τb∂t B→
)

(24)  

The field diffusion can still be computed in air (25) and in the material 
(26), providing that 

[
V2] is known. 

∇
→

∧ ∇
→

∧ H→= 0→ (25)  

∇
→

∧ ∇
→

∧ H→+ σ∂t B→= 0→ (26)  

[
V2] can be computed by the TMPT providing a coupling formulation 

(27) with the fields at boundaries. 
[
constraint(H→, B→,

[
V2])

]
= [0] (27)  

The Poynting theorem and flux diffusion principle 

Looking at the Hamiltonian of electromagnetic field (or the Poynting 
theorem [24]), 

H = T + U =

∫ (

σ− 1
⃒
⃒
⃒∇
→

∧ H→
⃒
⃒
⃒
2
+ H→• ∂t B→

)

.dt (28)  

we can notice at the first-order regarding the dynamic contributions 

(
⃒
⃒
⃒τb∂t B→

⃒
⃒
⃒≪
⃒
⃒
⃒B
→
⃒
⃒
⃒), that some of the TMPT energy contributions might be 

closely related to the part of Hamiltonian that comes from the space 
derivative of the reluctivity (for anisotropic properties (29)) and the 
tensor 

[
V2] (for the exchange properties (29)) or its time derivative (for 

the dissipation functional (30))   

H→• ∂t B→≈ [ν]
[
V2].φ→∂t

[
V2].φ→+[ν]τb∂t

[
V2].φ→.∂t

[
V2].φ→

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

R
̅→

ed∝[ν]τb∂t[V2]⊙
→

τb∂t[V2]

(30)  

The rest of the Hamiltonian allows to write the governing diffusion 

∇
→

∧ H→≈ ∇
→

∧
(
[ν]
[
V2]φ→

)
= ∇

→
∧ ([ν] )

[
V2]φ→

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

U→an∝
J2

s
σω

(
γw
Kan

)4(
(∇
→

∧ [ν] )
[
V2
] ) ⊙

→2

+ [ν]∇→∧
( [

V2] )φ→
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

U→ex∝
J2

s
σω

(
γw
Kan

)4(
[ν]
(
[∇
→
] ∧
[
V2
] ) ) ⊙

→2

+ [ν]
[
V2]∇

→
∧ (φ→) (29)   
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equation (31) for φ→. 

δ
∫ (

[ν]
[
V2]
(

σ− 1[ν]
[
V2]|∇

→
∧ φ→|

2
+ φ→• ∂t

[
V2]φ→

))
dt = 0 (31)  

This suggests that solving the governing equations of the TMPT should 
implicitly solve part of the Maxwell equations, the one that depends on the 
Material heterogeneous structure, for which both the micromagnetic and 
electromagnetic theories govern the mechanisms. The entanglement and 
connection between the classical energy contributions of electromagnetic 
fields and the TMPT Lagrangian also provide the relationship between the 
intelligible physical properties like γw and Kan and the so called magnetic 
reluctivity [ν] or like the time delays τ and τb. Additionally, this paper in-
vestigates how to derive the domains structuring and magnetization laws 
through the Lagrange principle [31] and the corresponding conservation 
laws with invariants linked to the Nœther theorem [32]. 

Derivation with the principle of least vectorial Action 

Quasi-Static conservative formulation (Euler Lagrange equations) 

The vectorial action S
̅→

(32) of the TMPT and its components (33) 

can be classically defined by the space and time integral of L
̅→

: 

S
̅→

=

∫∫∫ ∫

L
̅→( [

V2], ∂t
[
V2], t

)
dtd3x (32)  

S j =

∫∫∫ ∫

L j

(
V2

ij , ∂tV2
ij , t
)

dtd3x (33)  

Applying then the principle of stationary action (34), vectorial action 

here, with no explicit time variation of the Lagrangian L
̅→

; it is possible 
to derive, through the Euler Lagrange equations (tensor equation in this 
case), the tensor governing equation for 

[
V2] (35) (similar to a Poisson- 

like equation [31]). 

δ S
̅→

= 0 ⇔ δS j = 0

⇔

(
∂L j

∂V2
ij
− ∂t

(
∂L j

∂∂tV2
ij

))

= 0

⇔ (f≪GHz)

(

−
∂U j

∂V2
ij

)

= 0

(34)  

⇔ (f≪GHz) [Δ]
[
V2
]

−
Can

Cex

(
Kan

γw

)2

⎛

⎜
⎜
⎜
⎝

[
V2] −

⎛

⎜
⎜
⎜
⎝

K→an⋅
(
[
V2
]
⋅ K→an

)T

⃒
⃒
⃒
⃒K
→

an

⃒
⃒
⃒
⃒

2

⎞

⎟
⎟
⎟
⎠

T⎞

⎟
⎟
⎟
⎠

+
3
2

Cλs

Cex

(
Kan

γw

)2(
[λ]∴[s]
Kan

∴
[
V2]

)

-
9
4

Cλε

Cex

(
Kan

γw

)2
([

λ2]∴[C]
Kan

∴
[
V2]

)

= [0]

(35)  

Fig. 3. FEM computation of the quasi-static TMPT equations and results obtained on [Λ] components within the cross section of electrical steel sheets with thickness ζ 
and boundary conditions fixed (κ = κan + κλε − κλσ = (Can/Cex)*(Kan/γw)2 

+ (Cλε/Cex)*(Kan/γw)2(9λ2C/4Kan) − (Cλs/Cex)*(Kan/γw)2(3λs/2Kan)). 
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Fig. 3 shows one example of a result we can achieve by implementing 
such governing equations with the Finite Element Method (FEM) to find 
the magnetic structure from the point of view of tensor magnetic phases 
in the cross section of an electrical steel sheet, either grain oriented or 
non grain oriented. The figure gives the components of tensor [Λ], which 
is defined by 

[
Λ2] = [Λ]

2
=
[
V2]− 1. What is remarkable is that it seems 

possible to overlook the gradients of domains types and sizes from the 
surfaces (prioritizing closure domains) towards the volume (with 
importance given to the main domains oriented as a function of the 
anisotropy of the material). However this formulation still requires to 
know the boundary conditions as previously mentioned and given in the 
figure legend. 

Dynamic dissipative formulation (Nœther equations) 

Still applying then the principle of stationary vectorial action, but 

adding a possible time variation of L
̅→

(decreasing due to dissipation) 
and using the Nœther equations (36) [32]; it is possible to derive, 
through the Euler Lagrange Eqs. (37), the tensor dynamic diffusion-like 
Eq. (38) for 

[
V2]. 

δ S
̅→

= 0 ⇔ δS j = 0

⇔

(
∂L j

∂V2
ij
− ∂t

(
∂L j

∂∂tV2
ij

))

δV2
ij +

d
dt

(
∂L j

∂∂tV2
ij

δV2
ij

)

+
∂L j

∂t
δt = 0

(36)  

⇔ (f≪GHz)
∂L j

∂t
= −

∂U j

∂V2
ij

∂V2
ij

∂t
= +

∂R ed,j

∂τ∂tV2
ij

∂V2
ij

∂t

⇔

(
∂U j

∂V2
ij
+

∂R ed,j

∂τ∂tV2
ij

)

= 0
(37)  

⇔ (f≪GHz) [Δ]
[
V2
]

−
Can

Cex

(
Kan

γw

)2

⎛

⎜
⎜
⎜
⎝

[
V2] −

⎛

⎜
⎜
⎜
⎝

K→an⋅
(
[
V2
]
⋅ K→an

)T

⃒
⃒
⃒
⃒K
→

an

⃒
⃒
⃒
⃒

2

⎞

⎟
⎟
⎟
⎠

T⎞

⎟
⎟
⎟
⎠

+
3
2

Cλs

Cex

(
Kan

γw

)2(
[λ]∴[s]
Kan

∴
[
V2]

)

−
9
4

Cλε

Cex

(
Kan

γw

)2
( [

λ2]∴[C]
Kan

∴
[
V2]

)

−
1

Cex

(
Kan

γw

)2

τ∂t
[
V2] = [0]

(38) 

Fig. 4. FEM computation of the dynamic TMPT equations and results obtained on [Λ] components within the cross section of electrical steel sheets with thickness ζ, 
boundary conditions fixed and magneto-harmonic approximations (sinusoidal waveforms at frequency f = 400 Hz) (some of GO figures come from J.W. Shilling and 
J.R.L. Houze, Trans. On Mag., vol. MAG-10, o. 2, pp. 195, 1974 and M. Inamura, IEEE Trans. Mag, vol. MAG-19, no. 1, 1983.). 
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Using the same test case of the previous § (Fig. 3), we can compute the 
dynamic Partial Differential Equations (PDE) with the Finite Element 
Method (FEM) and find the magnetic structure from the point of view of 
the tensor magnetic phases in the cross section of an electrical steel 
sheet, either grain oriented or non-grain oriented. In Fig. 4, it seems 
possible to overlook the additional gradients and delays of domains 
types and sizes due to the anti eddy field that can prevent the surface 
domains from moving, deforming and multiplying like the ones in the 
volume. Finally, the TMPT must be discussed while checking its coher-
ence when considering reversal CPT symmetries [35] and invariance 
necessity [33,34]. 

Invariance and symmetry analysis 

According to H. Weyl [33], if nature was entirely describable by 
laws, the whole phenomena would show total symmetry of universal 
laws, like they are formulated in the theory of relativity [37]. The fact 
that such symmetry is not apparent everywhere proves that contingency 
is an essential characteristic of the world. A contraposition states that a 
formulation that does not satisfy any invariance property cannot be a 
natural law. Reciprocally, satisfying such conditions does not guarantee 
any physical sense. According to E. Wigner then [34], The progression 
from events to laws of nature and from laws of nature to symmetry or/ 
and invariance principles, is what to be meant by the hierarchy of our 
knowledge of the world around us. So we should look at some important 
symmetry and invariance properties, reasonably expected for any 
physical science theory that has the ambition to describe part of nature 
by laws. 

Charge, parity and time reversal symmetry 

The CPT symmetry property is a fundamental symmetry of physical 
laws under the transformations, potentially simultaneous trans-
formations, of Charge conjugation (C: flip in the sign of a charge, a 
dipole moment or a current), Parity transformation (P: flip in the sign of 
one spatial coordinate. In three dimensions, it can also refer to the 
simultaneous flip in the sign of all three spatial coordinates, i.e. a point 
reflection) and Time reversal (T: flip in the sign of time). The CPT the-
orem [35] says that CPT symmetry should hold for all physical phe-
nomena, or more precisely, that any invariant theory formulation with a 
Hermitian Hamiltonian must have CPT symmetry. 

This theorem raises the question regarding which statement of the 
theory, which formulation, must satisfy the CPT symmetry: the variables 
[
Λ2] and φ→ ((5) and (6)), the Lagrangian L

̅→
or/and action S

̅→
and 

Hamiltonian H energy densities ((11–22) and (28–31)) or the Partial 
Differential Equations ((35), (38), (31)). 

Charge conjugation (C): 
Let’s consider first the Charge conjugation which leads to magneti-

zation reversal: Js
→

= Js 1→→C − Js
→

= Js − 1̅→. Following the definitions (5) 
and (6), we deduce the following symmetry (39–40) for the variables: 
[
Λ2]→C

[
Λ2] (39)  

φ→→C − φ→ (40)  

As a consequence, the charge conjugation keeps invariant the formula-

tion of either the TMPT variable 
[
Λ2], its Lagrangian L

̅→
and Action S

̅→
, 

the PDE given by (35) and (38), but also the MAXWELL Hamiltonian H 

or (31) and the corresponding diffusion equation for φ→. 

Parity reflection (P): 
Let’s consider then the space reflection transformation which leads 

to: x→→P − x→ and ∇→→P − ∇
→. Following the definitions (5) and (6), we 

deduce the following symmetry (41–42) for the variables: 
[
Λ2]→P

[
Λ2] (41)  

φ→→P φ→ (42)  

Therefore, the space reflection keeps invariant the formulation of either 

the TMPT variable 
[
Λ2], its Lagrangian L

̅→
and Action S

̅→
, the PDE 

given by (31), (35) and (38), but also the MAXWELL Hamiltonian H or 
(31) and the corresponding diffusion equation for φ→. 

Time reversal (T): 

Let’s consider finally a time reversal which leads to: t→T − t and 

∂t→
T
− ∂t. Following the definitions (5) and (6), we deduce the following 

symmetry (43–44) for the variables: 
[
Λ2]→T

[
Λ2] (43)  

φ→→T φ→ (44)  

The time reversal keeps invariant the formulation of either the variable 
[
Λ2], its Lagrangian L

̅→
and Action S

̅→
, but also the PDE given by (35). 

However, the MAXWELL Hamiltonian H or (31) and the diffusion-like 
PDE given by (31) and (38) do not satisfy any T symmetry because of 
its intrinsic irreversible character. 

CPT symmetry properties of the TMPT theory are summed up in 
Table 1. 

Principle of invariance with respect to a change of reference frame 

According to E. Wigner [33,34], it is not necessary to look deeper 
into the situation to realize that laws of nature could not exist without 
principles of invariance. If the correlations between events changed 
from day to day, it would be different at different points of space and it 
would be impossible to discover them. Thus, the invariance of the laws 
of nature with respect to displacements in space and time are almost a 
necessary prerequisite to discovering, or even cataloguing, the correla-
tions between events which are the laws of nature. The most famous 
group of transformations that keeps invariant the laws of nature is the 
Lorentz Group [36,37] widely used in the specific Relativity theory [38]. 

When it comes to the electromagnetic fields in matter with consti-
tutive relationships like D→= ε E→ and H→ = ν B→. There is a controversy 
whether the electromagnetic fields E→, B→, D→, H→ can be combined or not 
in relativistic tensors if D→ and H→ are related to E→ and B→ by the linear 
constitutive relationships. Recently, the author J. Franklin [39] went to 
the conclusion that there is no way in special relativity to calculate the 
electromagnetic fields in any case where there is a moving linearly 
polarizable medium. Even calculating the E→ and B→ fields in the rest 
system of the polarizable medium, and then trying to Lorentz trans-
forming the fields to a moving system would not work because the E→

Table 1 
CPT symmetry properties of the TMPT theory.   

Tensor Magnetic Phase 
[
Λ2] formulation Flux φ→ formulation  

[
Λ2]

L
̅→

S
̅→ PDE φ→ H PDE 

C ☺ ☺ ☺ ☺ − ☺ ☺ 
P ☺ ☺ ☺ ☺ ☺ ☺ ☺ 
T ☺ ☺ ☺ ∅ ☺ ∅ ∅ 
CP ☺ ☺ ☺ ☺ − ☺ ☺ 
PT ☺ ☺ ☺ ∅ ☺ ∅ ∅ 
CT ☺ ☺ ☺ ∅ − ∅ ∅ 
CPT ☺ ☺ ☺ ∅ − ∅ ∅  
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and B→ fields themselves cannot be combined in a relativistic tensor in 
the presence of a polarizable medium. Some method other than the 
Lorentz transformation would have to be used to treat the electromag-
netism of a moving polarizable medium. For instance, non-relativistic 
treatment to 1st order in the velocity could be used. 

So, it is proposed to look for the group properties to give to a refer-
ence frame transformation towards a new frame with Galilean motion at 
speed v→, below the speed of light c, that satisfy the invariance principle 

for the space integral of Lagrangian L
̅→

(11) with dissipation R
̅→

ed (22) 

and its Action S
̅→

(32). v→ refers to the speed of motion of the magnetic 
system as a whole. Basic linear calculations led to a group of trans-
formations named V with the property detV = 1 (refer to appendix 5). 
Each transformation V involves the Lorentz-like factors β

→ and α (45), 
which look like the ones of relativity [36–38] but with two important 
and significant differences (ϑ instead of c and the sign + instead of –). 

β
→

=
v→

ϑ
and α =

(

1 +

⃒
⃒
⃒ β
→
⃒
⃒
⃒
2
)− 1/2

(45) 

The speed v can be higher than the property ϑ of (46), which is not a 
fundamental constant but represents the magnetic ordering speed, i.e. 
the exchange length [11,19] over the time delay of domains structuring. 

ϑ =
̅̅̅̅̅̅̅̅̅̅
2Cex

√ γw

Kanτ =
Ms

τ

̅̅̅̅̅̅̅̅̅̅

2Aex

Kan

√

(46)  

Transformations V are represented by a 4*4 matrix (47) similar to that 
of a dual 3D Lorentz transformation [36–38]. It can be simplified by a 
typical 4*4 matrix (48) (β = β1) still very similar to 1D Lorentz matrixes. 

V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α − αβ1

+αβ1 1 + (α − 1)
β2

1

β2

− αβ2 − αβ3

(α − 1)
β1β2

β2 (α − 1)
β1β3

β2

+αβ2 (α − 1)
β2β1

β2

+αβ3 (α − 1)
β3β1

β2

1 + (α − 1)
β2

2

β2 (α − 1)
β2β3

β2

(α − 1)
β3β2

β2 1 + (α − 1)
β2

3

β2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(47)  

V( v→= v1
→
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α − αβ

+αβ α

0 0

0 0

0 0

0 0

1 0

0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(48)  

Then the metrics to be used in association with this group of trans-
formation is defined by the metric tensor gμν = diag(1,1, 1,1) and means 
that 4-vectors invariant through the V transformations can be defined 
by (49) for the 4-position, (50) for the velocity, (51) for the force and 
(52) for the current density. 

(ϑt; x→) = (ϑt, x1, x2, x3)
t (49)  

α(ϑ; v→) (50)  

α
(

β
→

• F→; F→
)

(51)  

α
(ϑ

σ; j
→)

(52)  

This invariance principle simply tells us that the physical laws of the 
TMPT represented by the general Lagrangian (11) with dissipation R

̅→
ed 

(22) and its Action (32) can be invariant through a Galilean motion of 
the main reference frame at speed v→providing a V transformation of the 

4-vector (ϑt, x→) and the space and time differential operators. According 
to [40] at the beginning of the 20th century, the invariance theory is a 
relative concept, because it is possible to use one different invariance 
theory for each group of transformation. It becomes so natural to find a 
group of transformation V in the case of the TMPT theory which is 
different from the invariance principle exposed in the well known theory 
of relativity [38]. 

Applications of the tensor magnetic Phase theory 

Ferromagnetic materials 

The TMPT and any model able to describe the domains structure of a 
material can be used for ferromagnetic materials for which the hyster-
esis loops, apparent permeability and losses are closely related to the 
magnetization mechanisms within domains and walls. One of challenges 
then is still to describe the geometry dependent scalar but also vectorial 
behaviour of such materials [41,42]. The quasi-static 1D TMPT imple-
mentation for a NGOES first [43,44] and GOES then [28], with various 
thicknesses, giving its apparent permeability and iron losses with good 
approximation, has been one of the first encouraging results for the 
development of the theory within the dynamic condition in the volume 
too. 

Ferroelectric and Multiferroïc materials 

The TMPT can be used not only for ferromagnetic polarized materials 
(index J) but also for Ferroelectric (index P) (containing electrically 
polarized domains) and multiferroic materials (containing both 
magnetically and electrically polarized domains). In this purpose, the 
electric polarization P→ (54) has to be detailed next to the magnetic 
polarization (53), with probable relationships between the two. 

J→=
[
V2

J
]

φJ
̅→ =

[
V2

J
]( [

Λ2
J↑

]
−
[
Λ2

J↓

] )
Js 1→ (53)  

P→=
[
V2

P
]

φP
̅→ =

[
V2

P
]( [

Λ2
P↑

]
−
[
Λ2

P↓

] )
Ps 1→ (54)  

Processes with TMPT control 

One of the first industrial applications of this work is the assistance 
required and given to some manufacturing processes of material through 
a TMPT control. As an example, it is worth mentioning the investigations 
and developments performed to specify a pulsed laser surface treatment 
useful to act on the surface magnetic structure and therefore also inside 
the volume of an electrical steel. Different pulse durations (Long Pulsed 
Laser LPL, Short Pulsed Laser SPL and Ultra Short Pulsed Laser USPL) 
[45], powers and patterns [46] have been investigated to achieve the 
best possible control of beneficial magnetic structure (images through 
dedicated microscope called MOKE or MOIF [3]). Purpose of this mag-
netic structure control is to reduce both the iron losses up to 50 % in 
some configurations and the magnetic induced vibration responsible for 
the noise up to 20 dB. 

Magnetic cores 

Regarding the products manufacturing, we refer to a large number of 
magnetic cores, using ferromagnetic materials:  

• The Ones with various shapes for which we may be interested in the 
permeability spectra  

• The Ones inside the classical magnetic components such as the 
chokes, transformers, the motors, generators … for which we are 
interested in the impedance, losses and yield 
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• The Ones inside accurate sensors and sensitivity actuators, requiring 
a high sensitivity not altered by the boundary and transient effects … 
like in circuit breakers for examples 

The main stake is definitely to ease the computation of fields diffu-
sion inside the polarizable media inside the cores while avoiding the 
tremendous complexity and enormous time consumption of a direct 
coupling between electromagnetism and micro-magnetism [47], which 
would be impossible for a whole prototype. 

Discussion, conclusion and forthcoming 

The purpose of a theory in Physics is to be able to describe the reality 
or what we can observe with consistency. That is why this theory must 
be confronted with both observations and measurements. 

Theory against observations 

Firstly considering observations, it is not always possible to have 
access to the true magnetic structure inside the volume of samples larger 
than some nano or micrometers … However, previous works, such as A. 
Hubert and R. Schafer in Germany [3], allowed us to compare what has 
been discovered by the images at disposal and what can be predicted by 
the TMPT. In a GOES for example, the tensor terms seem able to over-
look again both the main 180◦ domains without gradients and the 
closure domains with gradients [28] (the Lancet domains, 90◦ domains, 
tree patterns etc.). The space variations are driven by the ratio κ between 
the anisotropy and the exchange. Nevertheless, the TMPT can certainly 
overlook the typical magnetic phases of domains in terms of statistical 
directions and sizes and its gradient into a material, but it cannot give 
the exact microscopic shape and arrangement of domains and walls. 

Theory against measurements 

Considering now measurements, the 1D TMPT problem has been 
calculated analytically to compute the dynamic magnetization of a 
GOES sheet sample in the rolling direction with various thicknesses. The 
two measurable observables named apparent permeability and losses 
have been found [28]. The TMPT result seems promising, since 
providing an accurate identification of the material properties (κ, related 
to the anisotropy over exchange plus magnetostriction; the boundary 

surface structure Λ0 and the time delay τ) for the domains structuring, it 
gives a perfect fitting of the apparent permeability and losses for the 
whole thicknesses, in reference [28] at low induction levels (linear 
assumptions). 

Conclusion and forthcoming 

The physics result of this work is an invariant energy formulation 
dedicated to polarized media such as ferromagnetic, ferroelectric and 
multiferroic materials. Results take into account the geometry, field and 
stress dependence of polarized domains and flux at a long distance, the 
variability of those polarized domains with phases, dynamics and losses, 
the anisotropic behaviour intrinsic in the tensor variables. Still work has 
to be done to develop the TMPT theory and formulation with non linear 
coupling to classical fields at boundaries and in the volume, variations 
with the whole kinds of exchange and anisotropy, rebuilding vector 
hysteresis loops with memory and dynamics, investigations on dual 
wave equations at high frequencies (Barkhausen noise, spin waves etc.). 
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APPENDIX 1: Mathematical Tools, properties and specific TMPT operators 

Operators. 

[Y] =
[

Y→1, Y→2, Y→3

]

=

⎡

⎢
⎢
⎢
⎣

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎤

⎥
⎥
⎥
⎦

[n] = [ n→, n→, n→]

[Y]T means to transpose the matrix [Y]. 

[∇
→
]
(

A→
)

=
[
∇
→

⊗ A→
]
,
[
[∇
→
]
(

A→
) ]

ij
=
[
∇
→

⊗ A→
]

ij
: tensor gradient on a vector, 

∇
→⋅[Y] =

(

∇
→⋅ Y→1 ,∇

→⋅ Y→2,∇
→⋅ Y→3

)T
: vector divergence on a tensor, 

[∇
→
]× [Y] = [∇

→
× ][Y] =

[

∇
→

∧ Y→1,∇
→

∧ Y→2,∇
→

∧ Y→3

]T
: tensor rotational on a tensor, 

[Δ][Y] =
[

Δ→
(

Y→1

)

, Δ→
(

Y→2

)

, Δ→
(

Y→3

)]T
: tensor Laplacian on a tensor, 

∇
→⋅ = (∂1⋅, ∂2⋅, ∂3⋅)T : Nabla operator, 
Δ→⋅ = (∂1∂1⋅, ∂2∂2⋅, ∂3∂3⋅)T : Laplacian operator. 
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Operations. 
[

A→⊗ B→
]
,
[

A→⊗ B→
]

ij
= AiBj: tensor product between two vectors. 

[[Y]∴[Z] ], [[Y]∴[Z] ]ij = YijZij: tensor product type 1 between 2 tensors. 

[[Y] × [Z] ] =
[

Y→1 ∧ Z→1, Y→2 ∧ Z→2, Y→3 ∧ Z→3

]T
: tensor product type 2 between 2 tensors. 

([Y]⊙→[Z] ) =

(

Y→1⋅ Z→1, Y→2⋅ Z→2, Y→3⋅ Z→3

)T
, 
(
[Y] ⊙

→2
)

= ([Y]⊙→[Y] ): vector product between 2 tensors. 

[Y]◦[Z] = YijZij: scalar product between two tensors. 

Derivative and integral properties 

[∇
→

× ][∇
→

× ][Y] = [∇
→
](∇
→⋅[Y] ) − [Δ][Y]

[X]⊙→([Y] × [Z] ) = [Z]⊙→([X] × [Y] ) = [Y]⊙→([Z] × [X] )

∇
→⋅
(
[Y]A→

)
= (∇

→⋅[Y] )⋅ A→+[Y]◦
[
∇
→

⊗ A→
]

∫∫

Ω

(
∇
→⋅ A→

)
d3x = ∯ ∂Ω

(
A→⋅ n→

)
d2x  

∫∫

Ω

(
∇
→

∧ A→
)

d3x = ∯ ∂Ω −
(

A→∧ n→
)

d2x  

∫∫

Ω

(∇
→⋅[Y] )d3x = ∯ ∂Ω([Y]⊙

→
[n] )d2x  

∫∫

Ω

([∇
→
] × [Y] )d3x = ∯ ∂Ω − ([Y] × [n] )d2x  

∫∫

Σ

([∇
→
] × [Y] )d2x =

∮

∂Σ

([Y]⊙→[n] ) dx  

APPENDIX 2: Origin and formulation of the magnetic exchange energy 

The Exchange energy has got a quantum origin at the atomistic and microscopic scales, using the following physical properties: 
γ: the gyromagnetic factor [C.kg-1]=[s-1.T-1]. 
Jex: the quantum Exchange integral Energy [J]. 
dV = dΩlattice = dx1dx2dx3: volume of each crystal lattice [m3]. 
dx1, dx2, dx3: geometrical dimensions of one crystal lattice [m]. 
Zc: the coordination number or ligancy of each atom of the crystal lattice. 

mi
̅→

=
dμi
̅→

dV =
(

gμB
ℏ

) dsi
̅→

dV = (γ) dsi
̅→

dV : the microscopic magnetization mi
̅→ defined by the volume density of magnetic moments dμi

̅→
[A.m2] carried by the 

atoms and due to the density of electrons’ spin momentum dsi
̅→

[J.s]. 
The original microscopic Exchange energy ξex [J] comes from a discrete summation of the interactions of every couples (i,j) of atomic spins 

momentum of electrons dsi
̅→

and dsj
̅→

. 

ξex =
∑

i

∑

j
−

Jex

ℏ2 dsi
̅→

• dsj
̅→

=
∑

i

∑

j
−

JexdV2

(gμB)
2 mi
̅→

• mj
̅→

=
∑

i

∑

j
−

JexdV2

(γℏ)2 mi
̅→

• mj
̅→

Each microscopic magnetization vector mj
̅→ may be expanded in a Taylor series until the second order, as a function of its neighboring microscopic 

magnetization vector mi
̅→: 

mj
̅→

≈ mi
̅→

+
(

∂xkj mi
̅→dxkj

)
+

1
2

(
∂2

xkj
mi
̅→dx2

kj

)
+ θ
(

dx2
kj

)

On summing only over nearest neighbors of each atom i: 

ξex ≈⏟⏞⏞⏟
1st neighbors

2ndorder

∑

i

∑Zc

j=1

1st neighbors

−
JexdV2

(γℏ)2

(

m2
i + mi

̅→
•
(

∂xkj mi
̅→dxkj

)
+

1
2

mi
̅→

•
(

∂2
xkj

mi
̅→dx2

kj

))
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Let’s develop the final approximate expression of the variable part of the Exchange Energy for a body-centered cubic lattice with lattice constant a: 

ξex ≈⏟⏞⏞⏟

1st neighbors 2ndorder

∑

i
− Aex

(

mi
̅→

•
∑3

k=1

(
∂2

xk
( • )

)
mi
̅→

)

dV =
∑

i
− Aex( mi

̅→
• Δ( mi

̅→
) )dV  

With Aex = JexdV2

(γℏ)2a 
the macroscopic Exchange coefficient [J.m.A-2] 

and Δ( • ) = ∇
→2

( • ) =
∑3

k=1∂2
xk
( • ) the Laplacian operator in cartesian coordinates. 

The fact that each magnetization vector has got a constant modulus given by the saturation magnetization mi
̅→

• mi
̅→

= M2
s , we can use the 

following relationships: 

0 = ∂xk

(
M2

s
)
= ∂xk ( mi

̅→⋅ mi
̅→

) = 2. mi
̅→⋅∂xk ( mi

̅→
)⇒

0 = ∂xk

(
mi
̅→⋅∂xk ( mi

̅→
)
)
=
(
∂xk ( mi

̅→
)
)2

+ mi
̅→⋅∂2

xk
( mi
̅→

)⇔ − mi
̅→⋅∂2

xk
( mi
̅→

) =
(
∂xk ( mi

̅→
)
)2  

Then the Exchange energy can be written by two ways like in the literature: 

ξex ≈⏟⏞⏞⏟

1st neigh. 2ndorder

∑

i
− Aex( mi

̅→
• Δ( mi

̅→
) )dV =

∑

i
+Aex

∑3

k=1

(
∂xk ( mi

̅→
)
)2dV =

∑

i
+Aex

∑3

k=1
(∇
→
(mik) )

2dV   

By using the equivalence: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑3
k=1

(
∂xk ( mi

̅→
)
)2

= (∂x1 ( mi
̅→

) )
2
+ (∂x2 ( mi

̅→
) )

2
+ (∂x3 ( mi

̅→
) )

2

=
∑3

k=1

(
(∂x1 (mik) )

2
+ (∂x2 (mik) )

2
+ (∂x3 (mik) )

2
)
=
∑3

k=1
(∇
→
(mik) )

2

∕= (∇
→⋅ mi
̅→

)
2
=

(
∑3

k=1
∂xk (mik)

)2 

Considering a very large number of atoms into the material, the crystal size being infinitely small compared to the sample size (dV→0), the discrete 
formulation tends towards its continuous integral formulation that follows:  

ξex ̅̅̅→
dV̅̅̅→0

∫∫∫

V
− Aex( mi

̅→
• Δ( mi

̅→
) )dV =

∫∫∫

V
+Aex

∑3

k=1
(∇
→
(mik) )

2dV  

This gives a second order approximation of the Exchange energy density per unit volume uex [J.m− 3]: 

uex ≈⏟⏞⏞⏟
2ndorder

− Aex(m→• Δ(m→) ) = +Aex

∑3

k=1
(∇
→
(mk) )

2  

Another expression is possible thanks to the vector identity ∇→∧ ∇
→

∧ m→ = ∇
→
(∇
→

• m→) − Δ(m→), the Green Ostrogradsky theorem ∭
V
∇
→⋅ T→dV = ∯ ∂V T→⋅ 

dS
̅→

and the Integration by parts: 

ξex ̅̅̅→
dV̅̅̅→0

− Aex

∫∫∫

V
(m→• Δ(m→) )dV = +Aex

∫∫∫

V
m→• (∇

→
∧ ∇
→

∧ m→− ∇
→
(∇
→

• m→) )dV  

The first integral becomes (Einstein notation with the use of the Levi-Civita tensor1): 
∫∫∫

V
m→• (∇

→
∧ ∇
→

∧ m→)dV =

∫∫∫

V

(
mpεpqr∂q

(
εrij∂imj

) )
dV =

∫∫∫

V
εpqr∂q

(
mpεrij∂imj

)
dV −

∫∫∫

V

(
εpqr∂q

(
mp
)(

εrij∂imj
) )

dV  

= −

∫∫∫

V
εqpr∂q

(
mpεrij∂imj

)
dV +

∫∫∫

V

(
εqpr∂qmp

)(
εrij∂imj

)
dV  

=

∫∫∫

V
∇
→

• ( − m→∧ ∇
→

∧ m→)dV+

∫∫∫

V
(∇
→

∧ m→) • (∇
→

∧ m→)dV  

1 εpqr is the Levi-Civita tensor defined by: ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = − 1 and εppr = εpqq = εrpr = 0 
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= ∯ ∂V( − m→∧ ∇
→

∧ m→)⋅ dS
̅→

+

∫∫∫

V

|∇
→

∧ m→|
2dV 

The second integral gives: 
∫∫∫

V
m→• ( − ∇

→
(∇
→

• m→) )dV =

∫∫∫

V
− mp∂p

(
∂qmq

)
dV  

=

∫∫∫

V
− ∂p

(
mp
(
∂qmq

) )
dV+

∫∫∫

V

(
∂pmp

)(
∂qmq

)
dV  

=

∫∫∫

V
∇
→

• ( − (∇
→

• m→)m→)dV+

∫∫∫

V
(∇
→

• m→) • (∇
→

• m→)dV  

= ∯ ∂V( − (∇
→⋅m→)m→)⋅ dS

̅→
+

∫∫∫

V

|∇
→⋅m→|

2dV  

Another vector identity can be used: − m→∧ ∇
→

∧ m→ = − 1
2∇
→
(m→• m→) + (m→• ∇

→
)m→ = (m→• ∇

→
)m→

∇
→
(m→⊗ m→) = (∇

→
• m→)m→+(m→• ∇

→
)m→

Finally: ξex ̅̅̅→
dv̅̅̅→0∭

V
Aex|∇

→
∧ m→|

2dV + ∭
V

Aex|∇
→⋅m→|

2dV + ∯ ∂VAex(∇
→
(m→⊗ m→) − 2(∇→⋅m→)m→)⋅ dS

̅→

In this paper, we consider that any non-nil contribution of magnetic charges (∇→• m→) in the volume of the material is necessarily due to a 
demagnetizing field. So this energy integral ∭ VAex|∇

→
• m→|

2dV shall be included in the demagnetizing energy, minimized when ∇→• m→ =

∇
→

•

(

b
→

μ0
− h
→
)

→∇
→

•

(

b
→

μ0

)

= 0. 

Similarly, the surface energy integral ∯ ∂VAex(∇
→
(m→⊗ m→) − 2(∇→⋅m→)m→)⋅ dS

̅→
contributes to the demagnetizing field energy due to the surface 

magnetic poles, taken for the energy minimization principle into account through an adequate surface boundary condition. 
At the end, assuming the two previous assumptions we’ve got the following equivalence for the Exchange energy density per unit volume uex [J. 

m− 3] and the corresponding energy integral: 

uex ≈⏟⏞⏞⏟
2ndorder

− Aex(m→• Δ(m→) ) = +Aex

∑3

k=1
(∇
→
(mk) )

2 →
∇
→

•m→→0

Aex|∇
→

∧ m→|
2  

ξex ̅̅̅→
dv̅̅̅→0∫∫∫

V − Aex(m→• Δ(m→) )dV

=

∫∫∫

V
+ Aex

∑3

k=1
(∇
→
(mk) )

2dV

→
∇
→

•m→→0

∫∫∫

V
Aex|∇

→
∧ m→|

2dV  

In case it is not reasonable to consider that ∇→• m→→0, then we still suggest defining a high order approximation of the magnetic Exchange energy 

density with 
(

Aex|∇
→

∧ m→|
2
)

. In this case, it equals the usual 2nd order term ( − Aex(m→• Δ(m→) ) ) added to 
(
− Aex|∇

→
• m→|

2
)

, which shall balance the 

demagnetizing stray field energy due to ∇→• m→∕= 0. The boundary conditions stays fundamental to describe the demagnetizing stray field effects due 
to the surface magnetic poles. 

APPENDIX 3: TMPT energy terms derivation 

Averaging method or coarse-grained description of magnetization: 

M→(x , t) = 〈m→(x, t)〉x =

∫∫∫

w(x -x)m→(x, t)d3x  

It is a convolution over space with the kernel w(x) being a real, non-negative and continuous function normalized to unity (∭ Vw(x) = 1). It varies 
slowly over the size dw of domains. The width of the kernel’s plateau is larger than dw and w(x) tends towards 0 elsewhere (w(x) →

x≫dw
0). Then we have 

the following properties [27,29,30]: 

〈∇
→

∧ m→〉 = ∇
→

∧ 〈m→〉 and 〈∇
→

• m→〉 = ∇
→

• 〈m→〉

Magnetic Exchange Energy: 
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U ex,i = J2
s

(
γw

Kan

)4

∂φ2
i
U ex = J2

s

(
γw

Kan

)4

∂φ2
i
〈uex〉 = J2

s

(
γw

Kan

)4

∂φ2
i
〈Aex|(∇

→
∧ m→ ) |

2
〉

⇔ U ex,i = J2
s

(
γw

Kan

)4

Aex∂φ2
i
|(∇
→

∧ 〈m→〉) |
2
= J2

s

(
γw

Kan

)4Aex

μ2
0

∂φ2
i

⃒
⃒
(
∇
→

∧
( [

V2]φ→
) ) ⃒
⃒ 2  

⇔ U ex,i =

(
γw

Kan

)4(
M2

s Aex
)
∂φ2

i

(
∑

p

(
εpqr∂qV2

rs
)2φ2

s

)

=

(
γw

Kan

)4(
M2

s Aex
)
(
∑

p

(
εpqr∂qV2

ri
)2
)

⇔ U
̅→

ex =

(
γw
Kan

)4(
M2

s Aex
)(

[∇
→
] ×
[
V2] ) ⊙

→2
= Cex

γ6
w

K5
an

(
[∇
→
] ×
[
V2] ) ⊙

→2 with Cex = AexKan
γ2

w
M2

s = AexKan
γ2

w

J2
s

μ2
0
[n.u.]

Magneto-Crystalline Anisotropy (case of uni-axial anisotropy): 

U an,i = J2
s

(
γw

Kan

)4

∂φ2
i
U an = J2

s

(
γw

Kan

)4

∂φ2
i
〈uan〉 = J2

s

(
γw

Kan

)4

∂φ2
i
〈
kan

M2
s

⃒
⃒
⃒
⃒

(

m→∧ u→an

)

∧ u→an

⃒
⃒
⃒
⃒

2

〉

⇔ U an,i = J2
s

(
γw

Kan

)4kan

M2
s
∂φ2

i

⃒
⃒
⃒
⃒

(

〈m→〉 ∧ u→an

)

∧ u→an

⃒
⃒
⃒
⃒

2

= J2
s

(
γw

Kan

)4 kan

μ2
0M2

s
∂φ2

i

⃒
⃒
⃒
⃒

(
( [

V2]φ→
)
∧ u→an

)

∧ u→an

⃒
⃒
⃒
⃒

2  

⇔ U an,i =
kanγ4

w
K4

an
∂φ2

i

⃒
⃒
⃒
⃒

[
V2]φ→−

(
( [

V2]φ→
)
• u→an

)

u→an

⃒
⃒
⃒
⃒

2

=
kanγ4

w
K4

an
∂φ2

i

∑

p

(

V2
pqφq −

(
V2

rsφsKan,r
)
Kan,p

K2
an

)2  

⇔ U an,i =
kanγ4

w
K4

an

(

V2
pi −

(
V2

riKan,r
)
Kan,p

K2
an

)2

=
kanγ4

w
K4

an

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

[
V2] −

⎛

⎜
⎜
⎜
⎝

K→an⋅
(
[
V2
]
⋅ K→an

)T

⃒
⃒
⃒
⃒K
→

an

⃒
⃒
⃒
⃒

2

⎞

⎟
⎟
⎟
⎠

T ⎞

⎟
⎟
⎟
⎠

⊙
→2⎞

⎟
⎟
⎟
⎟
⎠

i  

⇔ u→an = Can
γ4

w
K3

an

⎛

⎜
⎜
⎜
⎜
⎝

[
V2] −

⎛

⎜
⎜
⎜
⎝

K→an⋅
(

[V2]⋅ K
→

an

)T

⃒
⃒
⃒K
→

an

⃒
⃒
⃒

2

⎞

⎟
⎟
⎟
⎠

T ⎞

⎟
⎟
⎟
⎟
⎠

⊙
→2 

with Can = kan
Kan

[n.u.]

Magneto Striction Energy (χ = − 3/2 or 9/4, [L] = [λ]or
[
λ2] and [T] = [s]or[C]): 

U λ,i = J2
s

(
γw

Kan

)4

∂φ2
i
U λ = J2

s

(
γw

Kan

)4

∂φ2
i
〈uλ〉

= J2
s

(
γw

Kan

)4

∂φ2
i

〈

χ [m
→

⊗ m→]

M2
s

◦(

[L]∴[T]∴
[m→⊗ m→]

M2
s

)〉

⇔ U λ,i =

(
γw

Kan

)4 χJ2
s

μ2
0M2

s

∂φ2
i

∑

p

∑

q

(

LpqTpq〈

(
μ0mpmq

Ms

)2

〉

)

≈⏟⏞⏞⏟
2nd

χ
(

γw

Kan

)4 J2
s

μ2
0M2

s
∂φ2

i

∑

p

∑

q

(

LpqTpq

(
V2

pqφq

)2
)

⇔ U λ,i = χ
(

γw

Kan

)4 J2
s

μ2
0M2

s
∂φ2

i

∑

p

∑

q

(
V2

pqφq •
(

LpqTpqV2
pqφq

))
= χ
(

γw

Kan

)4∑

p

(
V2

pi •
(

LpiTpiV2
pi

))

⇔ u→λ = χCλ
γ4

w
K3

an

[
V2]⊙

→
(

[L]∴[T]
Kan

∴
[
V2]

)

with Cλ = 1[n.u.]

APPENDIX 4: Magneto-Mechanical tensor properties 

Magnetostriction (magneto-mechanical strain). 

[ε] = 3
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ100

(

α2
1 −

1
3

)

λ111α1α2 λ111α1α3

λ111α2α1 λ100

(

α2
2 −

1
3

)

λ111α2α3

λ111α3α1 λ111α3α2 λ100

(

α2
3 −

1
3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with α1, α2, α3 the m→ cosine directors. 
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Potential stress induced magnetostriction energy: uλs = − 3
2

[m→⊗m→]

M2
s

◦
(

[λ]∴[s]∴[m→⊗m→]

M2
s

)

with: [λ] =

⎡

⎢
⎣

λ100 λ111 λ111
λ111 λ100 λ111
λ111 λ111 λ100

⎤

⎥
⎦ the tensor of magnetostriction coefficients. 

Hooke law in rhombohedral crystals: 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1

s2

s3

s4 = s23

s5 = s13

s6 = s12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε1

ε2

ε3

ε4

ε5

ε6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Potential self magnetostriction energy: uλε = + 9
4

[m→⊗m→]

M2
s

◦
(
[
λ2]∴[C]∴[m→⊗m→]

M2
s

)

with [C] =

⎡

⎢
⎣

C11 − C12 C44 C55
C44 C22 − C23 C66
C55 C66 C33 − C13

⎤

⎥
⎦, the magneto-mechanical stiffness tensor. 

with: 
[
λ2] =

⎡

⎢
⎢
⎣

λ2
100 ±λ2

111 ±λ2
111

±λ2
111 λ2

100 ±λ2
111

±λ2
111 ±λ2

111 λ2
100

⎤

⎥
⎥
⎦, the tensor of squared magnetostriction coefficients. 

APPENDIX 5: Group of transformation that keeps invariant the Lagrangian and its action 

We consider writing the entire space integral of the Lagrangian energy density with dissipation, i.e. the time derivation of the Action, in two 

different reference frames. This space integral of the Lagrangian energy density with dissipation named L #
̅̅→

and R
̅→#

ed will be written I#
̅→

= dS
#

̅̅→
/dt#

in a reference frame R#
= (O#; x

#
1 , x

#
2 , x

#
3 , t#) which is in Galilean motion at a speed v→ as a function of another reference frame R = (O; x1, x2, x3, t) in 

which the space integral of the Lagrangian energy density with dissipation named L
̅→

and R
̅→

ed will be written I
→

= d S
̅→

/dt. The invariance principle 

is satisfied if and only if this integral does not depend on the reference frame in which it is calculated, i.e. if and only if I#
̅→

= I
→

and S #
̅̅→

= S
̅→

. For 
clarity purpose of the proof, but without loss of generality, we consider that the speed v→ is parallel to one first direction of space named x1̅→, such that: 

OO#
̅̅→

(t + dt) = OO#
̅̅→

(t) + v→dt = OO#
̅̅→

(t) + vdtx 1
→

Considering that the two reference frames R# and R are in uniform relative motion from each other along the x1̅→ axis, we assume a linear trans-
formation of the coordinates, to be determined: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx 1 = a1dx
#

1 + a2dt#,
dx 2 = dx

#

2 ,

dx 3 = dx
#
3 ,

dt = a3dx
#
1 + a4dt#

The invariance problem consists in finding the parameters (a1,a2,a3,a4) that ensure perforce I#
̅→

= I
→

: 

I
#
̅→

=
dS

#
̅̅→

dt#
=
∫∫∫

∞

(

L
#

̅̅→
− R
̅→#

ed

)

d3x#

= −

∫∫∫

∞

(

U
̅→#

ex + U
̅→#

an + U
̅→#

λs + U
̅→#

λε + U
̅→#

dm + R
̅→#

ed

)

d3x#

I
→

=
d S
̅→

dt
=

∫∫∫

∞

(

L
̅→

− R
̅→

ed

)

d3x = −

∫∫∫

∞

(

U
̅→

ex + U
̅→

an + U
̅→

λs + U
̅→

λε + U
̅→

dm + R
̅→

ed

)

d3x  

Part of the energy densities without space or time operator are necessarily expressed with exactly the same formulation: U
̅→#

an + U
̅→#

λs + U
̅→#

λε +

U
̅→#

dm = U
̅→

an + U
̅→

λs + U
̅→

λε + U
̅→

dm. Besides, we can write: 
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−

∫∫∫

∞

(

U
̅→#

ex + R
̅→#

ed

)

d3x# = −

∫∫∫

∞

(

Cex
γ6

w
K5

an

(
[∇#
̅→

] ×
[
V2] ) ⊙

→2
+ R
̅→#

ed

)

d3x#

=

(

−

∫∫∫

∞

(

Cex
γ6

w
K5

an

(
∇#
̅→

•
( [

V2]×
(
[∇#
̅→

] ×
[
V2] ) )+

[
V2]⊙

→(
[∇#
̅→

] ×
(
[∇#
̅→

] ×
[
V2] ) ) )+ R

̅→#

ed

)

d3x#

)

=⏟⏞⏞⏟

∇#
̅→

•[V2]= 0→
Cex

γ6
w

K5
an

(
∭ ∞

[
V2]⊙

→(
[Δ#]

[
V2] )d3x#

)
− ∭ ∞

(

R
̅→#

ed

)

d3x# (with 
[
V2]→

∞
0→ outside the material) 

= −

∫∫∫

∞

(

Cex
γ6

w
K5

an

∑

p

(
∂

x
#
p

[
V2] ) ⊙

→2
+

1
2

γ4
w

K3
an

τ∂t#
[
V2]⊙

→τ∂t#
[
V2]

)

d3x#

The relationships between the partial differential operators in R# and the ones in R are as follow: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
x
#

1
(.) = (a1∂x1 (.) + a3∂t(.) ),

∂
x
#

2
(.) = ∂x2 (.),

∂
x
#

3
(.) = ∂x3 (.),

∂t# (.) = (a2∂x1 (.) + a4∂t(.) )

Satisfying I
#
̅→

= I
→

will enforce the following conditions for (a1,a2,a3,a4): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

a2
1 +

a2
2

ϑ2

)

= 1,

(

a2
3 +

a2
4

ϑ2

)

=
1
ϑ2,

(
a1a3 +

a2a4

ϑ2

)
= 0  

with ϑ =
̅̅̅̅̅̅̅̅̅̅
2Cex

√ γw
Kanτ =

Ms
τ

̅̅̅̅̅̅̅
2Aex
Kan

√
a characteristic speed of the magnetic structuring mechanisms. 

The solution is: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a1 = a4 = α =

(

1 +
(v

ϑ

)2
)− 1/2

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

1 + β2

√

,

a2 = αv,

a3 = −
αv
ϑ2 = −

αβ2

v 

with β = v
ϑ 

Which finally gives the proof of equations (45), (46) and the ones that follow. 
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[15] Chen DX, Muñoz JL. Theoretical eddy current permeability spectra of slabs with 
bar domains. IEEE Trans Magn 1997;33(3):2229–44. 

[16] Landau LD, Lifchitz EM. ”physique Statistique” (edition De Moscou 1984. 
[17] Bertotti G. Hysteresis in magnetism. (Academic Press; 1998. 
[18] Landau LD, Lifchitz EM. Electrodynamique des milieux continus. (edition De 

Moscou 1984. 
[19] Landau L, et al. On the theory of dispersion of magnetic permeability in 

ferromagnetic bodies. Physikalische Zeitschrift Der Sowjetunion 1935;8:153–69. 
[20] Lifshitz E. On the magnetic structure of iron. J Phys ussr 1944;8:337–46. 
[21] Kittel C. Physical Theory of Ferromagnetic Domains”. Review of modern physics 

1949;21(4):541. https://doi.org/10.1103/RevModPhys.21.541. 
[22] Brown WF. Micromagnetics. New York, London: Interscience Publishers; 1963. 
[23] Gilbert TL. A phenomenological theory of damping in ferromagnetic materials. 

IEEE Trans Magn Nov. 2004;40(6):3443–9. 
[24] Maxwell J. Clerk. A Dynamical Theory of the Electromagnetic Field. Philos Trans R 

Soc Lond 1865; 155: 459–512. JSTOR, http://www.jstor.org/stable/108892. 
[25] Joseph Larmor. “A dynamical theory of the electric and luminiferous medium.— 

Part III. relations with material media”, Philosophical Transactions of the Royal 
Society of London. Series a, Containing Papers of a Mathematical or Physical 
Character 1897;190:205–30. https://doi.org/10.1098/rsta.1897.0020. 

[26] Kittel C. Larmor and the Prehistory of the Lorentz Transformation. Am J Phys 
1971;42:726–9. 

[27] Maloberti O, et al. An Energy-Based Formulation for Dynamic Hysteresis and Extra- 
Losses. IEEE Trans Magn April 2006;42(4):895–8. https://doi.org/10.1109/ 
TMAG.2006.871992. 

[28] Maloberti O, et al. The tensor magnetic phase theory for mesoscopic volume 
structures of soft magnetic materials – Quasi-static and dynamic vector 
polarization, apparent permeability and losses – Experimental identifications of GO 

O. Maloberti                                                                                                                                                                                                                                     

https://doi.org/10.1103/PhysRev.38.1903
https://doi.org/10.1007/BF01339661
https://doi.org/10.1007/BF01339661
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0015
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0020
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0025
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0025
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0030
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0040
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0040
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0045
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0045
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0050
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0050
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0055
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0055
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0055
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0060
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0060
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0065
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0065
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0070
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0070
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0075
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0075
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0080
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0085
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0090
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0090
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0095
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0095
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0100
https://doi.org/10.1103/RevModPhys.21.541
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0110
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0115
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0115
http://www.jstor.org/stable/108892
https://doi.org/10.1098/rsta.1897.0020
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0130
http://refhub.elsevier.com/S2211-3797(24)00410-8/h0130
https://doi.org/10.1109/TMAG.2006.871992
https://doi.org/10.1109/TMAG.2006.871992


Results in Physics 62 (2024) 107727

18

steel at low induction levels. J Magn Magn Mater 2020;502:166403. https://doi. 
org/10.1016/j.jmmm.2020.166403. 

[29] Russakoff G. A derivation of the macroscopic Maxwell equations. Am J Phys 1970; 
38(10):1188–95. 

[30] Gratiy SL, et al. From Maxwell’s equations to the theory of current-source density 
analysis. Eur J Neurosci April 2017; 45 (8): 1013-1023. https://doi.org/10.1111/ 
ejn.13534. Epub 2017 Mar 28. PMID: 28177156; PMCID: PMC5413824. 

[31] Serret MJ-A, ”Œuvres de Lagrange”, tome 1-12 (PARIS, GAUTHIER-VILLARS). 
[32] Noether E. Invariante Variationsprobleme. Nachrichten Von Der Gesellschaft Der 

Wissenschaften Zu Göttingen, Mathematisch-Physikalische Klasse 1918 1918;2: 
235–67. 

[33] Christophe Eckes. Principes d’invariance et lois de la nature d’après Weyl et 
Wigner. Philosophia Scientiæ 2012;16–3. https://doi.org/10.4000/ 
philosophiascientiae.787. 

[34] Wigner EP. “The Role of Invariance Principles in Natural Philosophy”, Address at 
the 10th anniversary of the Scuola Internationale di Fisica “Enrico Fermi”. In: 
Symmetries and Reflections, Woodbridge: Ox Bow Press, 28–37 (1979). In: Mehra 
J. (eds) Philosophical Reflections and Syntheses, the Collected Works of Eugene 
Paul Wigner, vol B / 6, Springer, Berlin, Heidelberg; 1963. https://doi.org 
/10.1007/978-3-642-78374-6_27. 

[35] Bell JS. Birmingham University thesis (1954); G. L̈uders, Det. Kong. Danske 
Videnskabernes Selskab Mat.fysiske Meddelelser 28, no. 5 (1954); W. Pauli, in W. 
Pauli, ed., Niels Bohr and the Development of Physics (McGraw-Hill, New York, 
1955). 

[36] Hendryk Antoon Lorentz, Minkowski H, Weyl H. Das relativitätsprinzip. 4th ed. 
Leipzig: Teubner; 1922. 
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