
HAL Id: hal-04648744
https://u-picardie.hal.science/hal-04648744v1

Submitted on 1 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Understanding sedimentary systems and processes of
the Hikurangi subduction margin; from Trench to

Back-Arc. Volume 2
Lorna Strachan, Alan Orpin, Kyle Bland, Adam Mcarthur, Julien Bailleul

To cite this version:
Lorna Strachan, Alan Orpin, Kyle Bland, Adam Mcarthur, Julien Bailleul. Understanding sed-
imentary systems and processes of the Hikurangi subduction margin; from Trench to Back-
Arc. Volume 2. New Zealand Journal of Geology and Geophysics, 2024, 67 (3), pp.273-287.
�10.1080/00288306.2024.2358032�. �hal-04648744�

https://u-picardie.hal.science/hal-04648744v1
https://hal.archives-ouvertes.fr


This is a repository copy of Understanding sedimentary systems and processes of the 
Hikurangi Subduction Margin; from Trench to Back-Arc. Volume 1.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188740/

Version: Accepted Version

Article:

Strachan, LJ, Bailleul, J, Bland, KJ et al. (2 more authors) (2022) Understanding 
sedimentary systems and processes of the Hikurangi Subduction Margin; from Trench to 
Back-Arc. Volume 1. New Zealand Journal of Geology and Geophysics, 65 (1). pp. 1-16. 
ISSN 0028-8306 

https://doi.org/10.1080/00288306.2022.2048032

© 2022 The Royal Society of New Zealand. This is an author produced version of an 
article published in New Zealand Journal of Geology and Geophysics. Uploaded in 
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



For Peer Review
 O

nly

Understanding Sedimentary Systems and Processes of the 

Hikurangi Subduction Margin; from Trench to Back-Arc. 

 Volume 1

Journal: New Zealand Journal of Geology and Geophysics

Manuscript ID Draft

Manuscript Type: Research Paper

Date Submitted by the 

Author:
n/a

Complete List of Authors: Strachan, Lorna; Auckland University, Earth Science

Bailleul, Julien; UniLaSalle, Geosciences Department

Bland, Kyle; GNS Science, 

Orpin, Alan ; National Institute of Water and Atmospheric Research 

Wellington, 

McArthur, Adam; University of Leeds, School of Earth and Environment

Keywords:
Hikurangi Subduction Margin, Basins, Forearc, Subduction Wedge, 

Trench, Miocene, Quaternary, Sedimentary Systems, New Zealand

 

URL: http://mc.manuscriptcentral.com/nzjg

New Zealand Journal of Geology and Geophysics



For Peer Review
 O

nly

1 Understanding Sedimentary Systems and Processes of the Hikurangi 

2 Subduction Margin; from Trench to Back-Arc.  Volume 1.

3 Lorna J. Strachan1, Julien Bailleul2, Kyle J. Bland3, Alan R. Orpin4 and Adam D. McArthur5

4 1 School of Environment, University of Auckland, Auckland, New Zealand

5 2 U2R UNIL-UPJV 7511, Basins-Reservoirs-Resources (B2R), Geosciences department, UniLaSalle, 

6 60026 Beauvais, France

7 3 GNS Science, Lower Hutt, New Zealand 

8 4 National Institute of Water and Atmosphere Research (NIWA), Wellington, New Zealand

9 5 School of Earth and Environment, University of Leeds, Leeds, United Kingdom

10

11 ABSTRACT

12 This is the first of a two-part New Zealand Journal of Geology and Geophysics Special Issue that 

13 focuses on improving our understanding of sedimentary systems of the Hikurangi Subduction 

14 Margin, Aotearoa-New Zealand.  It is amongst the world’s youngest and most accessible active 

15 subduction margins and its sedimentary basins preserve a rich history of inception and ongoing 

16 evolution, spanning trench to back-arc positions.  These sediments and sedimentary rocks provide 

17 a record of surface processes from the latest Paleogene to today, and reflect the spatio-temporal 

18 variability of the effects of subduction, seismicity, volcanism, evolving sediment sources, routing 

19 systems and processes, all imprinted upon by glacio-eustatic sea-level changes.  The papers in this 

20 volume focus on the interplay between controlling mechanisms and the dynamics of these 

21 systems, from both onshore and offshore sedimentary environments.  This issue is divided into 

22 two themes, distinguished by geological age: 1. Miocene Sedimentary Systems and intra-slope 

23 basin evolution, and 2. Insights from Quaternary Sedimentary Systems from the trench to the 

24 inner margin. Collectively, these papers represent significant advances into our understanding of 

25 sedimentary systems within the Hikurangi Subduction Margin, with innovative results that may 

26 find applications to other convergent settings.
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30 Introduction

31 This is the first of two special issue volumes dedicated to the understanding of sedimentary 

32 systems of the Hikurangi Subduction Margin (HSM), located to the east of the North Island, 

33 Aotearoa-New Zealand (Fig. 1).  The HSM forms the southern part of the Tonga-Kermadec-

34 Hikurangi subduction system, where the oceanic Pacific plate is obliquely subducting beneath the 

35 continental Australian plate (Fig. 1; (Ballance 1976, 1993; Spörli 1980; Cole and Lewis 1981; 

36 Pettinga 1982; Chanier and Ferrière 1991; Lewis & Pettinga 1993; Field et al. 1997; Lewis et al. 

37 1998; Nicol et al. 2007; Barnes et al. 2010).  Subduction is interpreted to have initiated ~25 Ma 

38 and continues today (Rait et al. 1991; Nicol et al. 2007; Jiao et al. 2014). For the purposes of this 

39 special issue, the HSM region encompasses a broad deformation zone, at least 200 km across, 

40 stretching from the offshore Hikurangi Trough to the onshore Taupō Volcanic Zone (Ballance 

41 1993; Lewis & Pettinga, 1993; Nicol et al. 2007; Pedley et al., 2010) (Fig. 2). It contains many of 

42 the tectono-geomorphic elements of an idealised subduction system (e.g., Ballance 1993; Bailleul 

43 et al. 2013) (Fig. 3).

44 To the east of the sea-floor expression of the subduction deformation front, the Hikurangi Trough 

45 forms an elongate, trench-parallel depocentre infilled with gravity flow, contourite, and mass-

46 wasting deposits (Lewis 1994; Lewis et al. 1998; Lewis and Barnes 1999; Lewis and Pantin 2002; 

47 Barnes et al. 2010; Bland et al. 2015; McArthur and Tek 2021; Tek et al. 2021, this volume; Fig. 3).  

48 Moving westward, the upper (Australian) plate comprises a submerged subduction (accretionary) 

49 wedge (Lewis and Pettinga 1993), that incorporates (1) an outer accretionary prism close to the 

50 Hikurangi Trough, formed from accreted trench-fill sediments and overlain by Quaternary trench-

51 slope basins (e.g. Davey et al. 1986; Lewis and Pettinga 1993; Collot et al. 1996; Barnes and 

52 Mercier de Lépinay 1997; Lewis et al. 1999), and (2) an inner imbricated wedge cored by pre-

53 subduction rocks that have been deformed by Neogene–Quaternary folds and thrusts (Barnes et 

54 al. 2002; Bailleul et al. 2013; Barnes et al. 2010; Bland et al. 2015).
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55 Small sedimentary basins within the imbricated wedge are often filled with thick successions of 

56 syn-subduction sedimentary rocks (Fig. 3) (e.g. Lewis 1980; Cole and Lewis 1981; Pettinga 1982; 

57 Davey et al. 1986; Lewis and Pettinga 1993; Collot et al. 1996; Barnes et al. 2010; Bailleul et al. 

58 2007, 2013; Paquet et al. 2009; Bland et al. 2015; Strogen et al. 2018; McArthur et al. 2019; Griffin 

59 et al. 2021, this volume). The offshore margin displays extensive evidence of intense fluid 

60 migration (e.g. Katz 1981; Lewis and Marshall 1996; Barnes et al. 2010; Crutchley et al. 2010, 

61 2011; Faure et al. 2010; Greinert et al. 2010 ; Pecher et al. 2010; Plaza-Faverola et al. 2012; 

62 Kroeger et al. 2015, 2019; Watson et al. 2020a; Hillman et al. 2020), mass-wasting occurrences 

63 (Collot et al. 2001; Lamarche et al. 2008; Mountjoy et al. 2009; Joanne et al. 2010, 2013; Watson 

64 et al. 2020b), frequent downslope turbidity currents (e.g. Orpin et al. 2006, Pouderoux et al., 

65 2012a, 2012b, 2014; Crisóstomo-Figueroa et al. 2020) and contourite deposition (Carter et al. 

66 2002; Lewis and Pantin, 2002; Fernandes et al. 2018; Bailey et al. 2020). To the west, an exhumed 

67 emergent part of the subduction wedge, within the North Island’s Coastal Ranges, allows for 

68 careful outcrop-based approaches to understand the origins and architecture of the margin’s 

69 many trench-slope basins and depositional processes within gravity-driven systems (e.g. Van der 

70 Lingen and Pettinga 1980; Pettinga 1982; Van der Lingen 1982; Neef 1992, 1999; Lewis and 

71 Pettinga 1993; Reid 1998; Field 2005; Bailleul et al. 2007, 2013; Burgreen and Graham 2014; 

72 Buckeridge et al. 2018; McArthur and McCaffrey 2019; Caron et al. this volume; Claussmann et 

73 al. 2021b, this volume; McArthur et al. 2021a, this volume). In addition to active onland mud 

74 volcanoes and oil and gas seeps (Field et al. 1997; Pettinga 2003; Hollis et al. 2005; Sykes et al. 

75 2012; Malié et al. 2022), that part of the margin displays outcropping paleo-methane seeps and 

76 expressions of their plumbing systems (tubular carbonate concretions) hosted by Cretaceous to 

77 Miocene rocks (Ledésert et al., 2003; Campbell et al., 2008; Nyman et al., 2010; Kiel et al., 2013; 

78 Malié et al., 2017, 2022). Inboard of the Coastal Ranges lies a comparatively little-deformed 

79 partially exhumed forearc basin, in places containing >5 km of Neogene–Quaternary mixed 

80 clastic-carbonate sedimentary fill (e.g., Lillie 1953; Kingma 1971; Beu and Edwards 1984; Harmsen 

81 1985; Haywick et al. 1991; Ballance 1993; Beu 1995; Field et al. 1997; Begg and Johnston 2000; 

82 Mazengarb and Speden 2000; Lee and Begg 2002; Nelson et al. 2003; Bland et al. 2004, 2013; 

83 Caron et al. 2004a, 2004b, 2005; Lee et al. 2011; Bertaud-Gandar et al. 2017).  The forearc basin 
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84 is back-stopped by uplifted by fault-bounded Mesozoic metasedimentary basement rocks of 

85 North Island’s Axial Ranges, which are closely associated with many active crustal-scale strike-slip 

86 faults (North Island fault system) (e.g., Spörli 1980; Browne 1986, 2004; Cashman et al. 1992; 

87 Erdman and Kelsey 1992; Beanland et al. 1998; Lee and Begg 2002; Mouslopoulou et al. 2007; 

88 Nicol et al. 2007; Lee et al. 2011; Jiao et al. 2014; Bland et al. 2019; Ninis, this volume).  The active 

89 back-arc Taupō Volcanic Zone, incorporating voluminous rhyolitic, andesitic, and basaltic eruptive 

90 centres, defines the western extent of the region of interest for this volume (e.g., Ballance 1976, 

91 1988; Ballance et al. 1985; Cole 1986; Wilson et al. 1995; Kear 2004; Leonard et al. 2010; Lee et 

92 al. 2011; Mortimer and Scott 2020; Stagpoole et al. 2021; Pittari et al. 2021) (Fig. 3).

93 This volume includes nine original research papers that represent a diversity of topics, 

94 approaches, geological ages, and research groups from around the globe, including both 

95 emerging and established researchers (Table 1).  They are linked by the significance of the HSM 

96 as an accessible global laboratory for tectonic, sedimentological, and paleontological research.  

97 Many of these studies build on a legacy of several decades of outcrop and marine geology 

98 research, requiring cumulative months of fieldwork and numerous voyages (e.g., Lillie 1953; 

99 Kingma 1971; Van der Lingen and Pettinga 1980; Pettinga 1982; Harmsen 1985; Rait et al. 1991; 

100 Chanier and Ferrière 1991; Neef 1992; Lewis et al. 1993, 1999; Lewis and Pettinga 1993; Van der 

101 Lingen and Pettinga 1993; Beu 1995; Delteil et al. 1996; Barnes et al. 2010, 2019; Pecher et al. 

102 2019; Wallace et al. 2019). In addition, several authors have utilised freely available petroleum 

103 exploration (2D seismic-reflection and drillhole) data sets (e.g. Barnes et al. 2002; Barker et al. 

104 2009; Sutherland et al. 2009; Plaza-Faverola et al. 2012; Bland et al. 2015; Griffin et al. 2021, this 

105 volume) and proprietary 3D seismic data volumes (e.g. McArthur et al. 2019, this volume; Tek et 

106 al. 2021b this volume) to provide broader-scale context to understanding sedimentary system 

107 scale processes. 

108 The overarching theme of this volume is subduction and its profound influence on the spatio-

109 temporal evolution of sedimentary systems. The papers span some of the earliest preserved 

110 records of subduction within the HSM (e.g. Caron et al., Griffin et al., McArthur et al.)  through to 

111 expressions of Late Pleistocene–Holocene upper-plate fault mechanics within southern parts of 

112 the margin (Ninis et al.).  A staggering array of depositional sequences from Early Miocene to 
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113 Holocene age are encompassed, including indurated to unconsolidated clastic successions 

114 deposited in paleo-lakes through to shelf and deep-marine environments, and a diversity of 

115 lithofacies that includes mixed carbonate-clastic, reworked carbonates, siliciclastic-dominated, 

116 and volcaniclastic successions.

117 The authors have employed a wide range of methodologies, from fundamental field-based 

118 stratigraphic logging (McArthur et al., Caron et al.) to cutting-edge structure-from-motion 

119 photogrammetry (Claussmann et al.), optically stimulated luminescence dating (Ninis et al.) and 

120 paleontologically based dating techniques (Caron et al., Griffin et al.), permeability (Dutilleul et 

121 al.), 2D and 3D seismic-reflection interpretation (McArthur et al., Tek et al.), petrophysical well-

122 log analysis (Griffin et al.), taphonomy (Claussmann et al.), palynology (Marden et al.), and 

123 International Ocean Discovery Program (IODP) drilling of deep-water sites (Allen et al., Dutilleul 

124 et al.).

125 The volume is divided into two themes, distinguished by geological age.  The papers of theme 1 

126 focus on Miocene sedimentary systems and basin evolution within the early history of the HSM; 

127 they are ordered here in terms of scale, moving from discrete sedimentary systems (Claussmann 

128 et al., Caron et al.) to integrated basin-scale syntheses focussed on longer-term system evolution 

129 (Griffin et al., McArthur et al.).  The papers of theme 2 focus on Quaternary sedimentary systems.  

130 They are ordered here in terms of position within the HSM (Fig. 3) moving from the offshore 

131 Hikurangi Trough (Tek et al., Allen et al.), outer subduction wedge (Dutilleul et al.), to the inner 

132 subduction wedge (Marden et al.) and North Island forearc basin and Axial Ranges (Ninis et al.). 

133 Theme 1 Miocene sedimentary systems and basin evolution 

134 Special Issue Volume 1 and Theme 1 opens with Claussmann et al. who integrate mapping (3D 

135 outcrop models from drone acquisitions), high-resolution photography, sedimentology, 

136 paleontology, and taphonomy to unravel the spatio-temporal distribution of outcropping Early to 

137 Middle Miocene mass-transport deposits (MTDs) along the central Wairarapa coast (Fig. 2). The 

138 paper includes amazing images focussing on outcropping shelf-derived MTDs deposited in trench-

139 slope basins (Fig. 4).  The authors describe a range of distinct MTD textures, and link them to 

140 variable MTD transport processes and distance from the contemporaneous shelf, resulting in the 
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141 identification of complex slope stratigraphies consisting of multi-scaled coalescing deposits.  The 

142 authors invoke ongoing fold-thrust belt deformation associated with evolving subduction as the 

143 principle MTD trigger.

144 Although the sedimentary succession of the HSM is overwhelmingly siliciclastic strata, distinctive 

145 carbonate-rich intervals form prominent landscape and seafloor features throughout the region.  

146 Addressing such rocks, is the second paper in Theme 1 by Caron et al., who take an outcrop-based 

147 approach at Akaroa Peak quarry, northern Wairarapa, where a shallowing-upward carbonate 

148 succession is overlain by turbidite lobes. Through detailed field-based and petrographic analyses 

149 (Fig. 5), a series of biofacies and lithofacies are defined and used to understand the 

150 palaeoecological and tectono-eustatic depositional conditions that allowed these unusual 

151 carbonates to form within a lower trench-slope setting. The authors conclude that the succession 

152 is explainable within a tectono-eustatic based framework.

153 The volume’s third paper, by Griffin et al., explores an offshore part of the Miocene subduction 

154 wedge.  The authors reappraise multiple data-sets from the petroleum exploration drillhole 

155 Titihaoa-1, one of only three within the entire offshore HSM.  The authors utilise digital image- 

156 and wireline-log and new foraminiferal-based biostratigraphic data to refine the age, lithologies, 

157 sedimentary structures, faults and fractures, and in-situ stress within the drillhole’s ∼2740 m-

158 thick Holocene to early-Middle Miocene sedimentary succession (Fig. 6).  They identify a new 

159 unconformity based on biostratigraphy, and refine the previous age model.  Through comparison 

160 with nearby onshore outcrops, the geological evolution within the Titihaoa-1 area is framed 

161 within the context of the evolving HSM imbricated wedge.

162 This theme’s fourth paper, by McArthur et al., presents a comprehensive reconstruction of the 

163 Early to Middle Miocene geological history of the onshore Akitio sub-basin.  The outcrop-based 

164 study uses detailed lithofacies and stratigraphic analyses integrated with micropaleontological, 

165 and geological mapping data, to build realistic architectural models for trench-slope basins. 

166 Results also provide insights for the more proximal parts of the sedimentary system.  Moreover, 

167 by using proprietary seismic reflection data, the authors compare the onshore outcrop 

168 stratigraphy to the offshore, actively filling Akitio Trough, highlighting controls on trench-slope 
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169 basin fill. Using these case studies together, they present a schematic model of the evolution of 

170 Neogene–Quaternary trench-slope basins within the Hikurangi Margin (Fig. 7).  Although the 

171 offshore area represents a subtly different setting with no shallow-marine incursions, a similar 

172 evolution is proposed, from confined to semi- to unconfined basin filling. 

173 Theme 2 - Quaternary Sedimentary Systems - from trench to inner margin 

174 The opening paper of Theme 2 is by Tek et al., who provide a comprehensive, detailed 

175 quantitative study of Quaternary sediment waves on the outer and inner bends of the submarine 

176 Hikurangi Channel (Fig. 8).  The authors employ quantitative geomorphic techniques to both 

177 bathymetric and subsurface 3D seismic-reflection data-sets to obtain detailed statistical 

178 extractions of sediment-waves fields with the aim to help understand what controls their 

179 formation.  The paper presents nine controls, many of which have been cited in similar overbank 

180 studies from different locations.  However, a novel and significant outcome from this paper is the 

181 recognition that overbank flows and their deposits can interact, being sourced from different 

182 locations within the same system. This does not produce the typical decay in bed thickness away 

183 from thalwegs, as might be expected. Of perhaps more importance is the recognition of inner-

184 channel wave-fields and the identification of at least two modes of formation depending upon 

185 orientation.

186 The second paper in Theme 2 is by Allen et al.  They present a volcaniclastic sedimentological and 

187 petrological study of two IODP Expedition 375 core-sites (U1520 and U1526) associated with 

188 Tūranganui Knoll, a Cretaceous-aged seamount located in the northern part of the Hikurangi 

189 Trough, east of the subduction interface (Fig. 2).   The study aims to offer insights into fluid-flow, 

190 paleoenvironmental conditions, and diagenetic processes within this part of the HSM, providing 

191 analogues for other margins. Strata within the studied interval at U1520 were found to be 

192 composed of volcaniclastic debris transported downslope, whereas strata at U1526 are thought 

193 to be subaerial eruption products reworked by wave action.  This study provides useful insights 

194 into what some of the dozens of seamounts within the wider HSM and associated subducting 

195 Hikurangi Plateau (Pacific plate) are likely to be composed of and their potential impact on the 

196 subduction process itself.
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197 Datasets from recent IODP drilling are also used to explore active sea-floor processes off the 

198 Hawke Bay coast, by Dutilleul et al. in the third paper in Theme 2.  Using data from IODP 

199 Expeditions 372 and 375 (sites U1517 and U1519) (Fig. 9), the authors assess changes in porosity, 

200 pore structure, and permeability between the two drill sites to determine potential links between 

201 excess pore-pressure, gas hydrates, and creeping of the large submarine Tuaheni Landslide 

202 Complex (TLC). The authors combine shipboard data including logging-while-drilling (LWD) data 

203 with physical core-sample analyses to determine interstitial porosity, pore-size distribution, and 

204 permeability.   Despite evidence for variations in porosity and pore-pressures within and between 

205 sites, the authors conclude that there is no obvious evidence of the involvement of gas hydrate 

206 in active creeping at the TLC, which is more likely induced by hydro-geomechanical processes.  

207 Further, they suggest that their results support studying other mechanisms of creeping at the TLC 

208 and at other analogous locations where gas-hydrates and submarine landslides co-exist.

209 The penultimate paper in the Special Issue Volume 1 and in Theme 2 is by Marden et al., who use 

210 a well-preserved stratigraphic record from 26, shallow (up to 20 m long) sediment cores from an 

211 upland paleolake — Redpath Lake — that is thought to have existed for c. 12 kyr (17.3–5.5 cal ka 

212 BP).  Redpath Lake is located in the Waipaoa River sedimentary system (Fig. 2), and interpreted 

213 to be a transient landslide-dammed lake.  The authors integrate sedimentological and 

214 stratigraphic analyses, with radiometric 14C, tephrochronology and palynology to provide an 

215 interpretive window into Late Pleistocene paleoclimate, paleovegetation and paleoecological 

216 changes in the region. They reveal a mean storm frequency of c. 226 years and a counterintuitive 

217 absence of seismic-shaking related sedimentary structures.  Pollen analyses focus on a shorter, 

218 but significant period between c. 16.3–14.1 cal ka BP (Fig. 10).  Although perhaps representing a 

219 snap-shot of paleo-ecological conditions, this comprehensive study shows the complex nature of 

220 the latter part of the climatically variable Last Glacial-Interglacial Transition. 

221 The concluding paper of Volume 1 and Theme 2 is a key study by Ninis et al., that aims to 

222 understand the distribution of permanent upper-plate tectonic uplift across the southern HSM.  

223 This superb paper reassesses the age, elevation, and distribution of a spectacular flight of Late 

224 Pleistocene wave-cut marine terraces (Fig. 11) along the southernmost coast of the North Island 

225 by integrating sedimentology, stratigraphy, numerical dating techniques (Optically Stimulated 
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226 Luminescence, OSL dating) with differential Global Navigation Satellite System (GNSS) 

227 measurements. The authors correlate the marine terraces by age along the coast, enabling the 

228 identification of uplift patterns associated with active faulting and subduction at this plate margin. 

229 They provide the first numerical ages for most of these terraces, allowing the first regional-scale 

230 correlations to be made, with some surprising temporal clustering of tectonic uplift. We chose to 

231 conclude the volume with this paper as it encapsulates the interplay between the sedimentary, 

232 climatic, and tectonic processes highlighted in the volume’s papers, and which have resulted in 

233 the spectacular landscapes and seascapes of today's HSM (Fig. 2). 

234 Conclusion

235 This is the first of two NZJGG special issue volumes dedicated to the understanding of sedimentary 

236 systems of the Hikurangi Subduction Margin (HSM). Volume 1 includes nine research papers from 

237 a diverse group of international researchers.  This points to a very vibrant and exciting period of 

238 intense research into the HSM that builds upon many decades of work.  Two themes of Volume 

239 1 reveal two sides of HSM evolution, with the papers that focus on Miocene Sedimentary Systems 

240 revealing details of a very different continental margin to today, but one that would lay the 

241 foundation for the Quaternary Sedimentary System(s) that were to follow. Tantalising results 

242 from these papers also reveal a margin rattled by frequent storms, floods, landslides, earthquakes 

243 and volcanic eruptions that may have some temporal ordering to them.  Collectively, these papers 

244 represent significant advances into our understanding of the geology of the HSM, with innovative 

245 results that may find applications to other convergent settings.
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254 Figures

255 Figure 1.  New Zealand and the Hikurangi Subduction Margin (HSM) in the South-West Pacific. 

256 Background map from Google Earth Pro V 7.3.4.8248 (July 16, 2021), -31.38°S, 163.61°E, Eye 

257 altitude 7211 km, February 15, 2022).

258 Figure 2.  Bathymetric and topographic map of North Island, New Zealand showing: 1) The main 

259 morpho-structural and morpho-sedimentary elements of the HSM; 2) The study areas of the 

260 papers contained within this special issue, and 3) The location of the geological cross-section of 

261 Figure 3. Mapping data come from the 250 m resolution gridded bathymetric data set 2016 from 

262 NIWA (Mitchell et al., 2012).

263 Figure 3.  Schematic cross-section of the Hikurangi subduction margin showing: 1) The main 

264 subduction-related morpho-structural features; and 2) The relative distribution across the margin 

265 of the studies published within the special issue.  Modified from Chanier et al. (1999) by Bailleul 

266 et al. (2007) and Claussmann et al. (2021, this volume).  Subdivisions of the subduction wedge 

267 follows McArthur et al. (2019). C.R. – Coastal Ranges, corresponding roughly to the trench-slope 

268 break of the margin; A.P. – Accretionary prism and protothrust zone (Barnes et al., 2018).

269 Figure 4. This figure, from Claussmann et al. (this volume), shows impressive coastal exposures of 

270 Middle Miocene shelf-derived MTDs infilling syn-subduction intra-slope basins (image provided 

271 courtesy of Claussmann et al. and with permission from the Royal Society of New Zealand. 

272 doi:10.1080/00288306.2021.1918729).

273 Figure 5. This figure, from Caron et al. (this volume), outlines the high diversity of microfacies that 

274 can be found in the Early Miocene limestones of the Coastal Ranges, pointing out contrasted and 

275 tectonically-controlled shallow water depositional settings on top of the early Hikurangi 

276 subduction wedge (image provided courtesy of Caron et al. and with permission from the Royal 

277 Society of New Zealand. doi:10.1080/00288306.2021.1960865).

278 Figure 6. This figure, from Griffin et al. (this volume), illustrates comparisons between spectacular 

279 outcropping thin-bedded Miocene turbidites along the central Wairarapa coastline, and similar 

280 strata that were imaged by a FMI(™) resistivity image-log within the nearby, offshore Titihaoa-1 

281 drillhole. Such rocks and sedimentary lithofacies are widespread within trench-slope basins in the 
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282 HSM (image provided courtesy of Griffin et al. and with permission from the Royal Society of New 

283 Zealand. doi:10.1080/00288306.2021.1932527).

284 Figure 7. This figure, from McArthur et al. (this volume), is a schematic reconstruction of the 

285 evolution of a trench-slope basin based on a detailed sedimentological analysis and systematic 

286 mapping of a Miocene field analogue outcropping within the Coastal Ranges (image provided 

287 courtesy of McArthur et al. and with permission from the Royal Society of New Zealand. 

288 doi:10.1080/00288306.2021.1977343).

289 Figure 8. This figure, from Tek et al. (this volume), displays several maps showing the seafloor 

290 expression of an overbank sediment wave field for a part of the deep-water Hikurangi Channel 

291 covered by 3D seismic data (image provided courtesy of Tek et al. and with permission from the 

292 Royal Society of New Zealand. doi:10.1080/00288306.2021.1978509).

293 Figure 9. This figure, from Dutilleul et al. (this volume), locates IODP sites of Expeditions 372/375 

294 and the Tuaheni submarine landslide Complex on a bathymetric map of the northern part of the 

295 HSM (image provided courtesy of Dutilleul et al. and with permission from the Royal Society of 

296 New Zealand. doi:10.1080/00288306.2021.1990088).

297 Figure 10. This figure, from Marden et al. (this volume), corresponds to the pollen spectra 

298 identified from a Late Pleistocene upland paleolake recently discovered onshore the HSM (image 

299 provided courtesy of Marden et al. and with permission from the Royal Society of New Zealand. 

300 doi:10.1080/00288306.2021.1947327).

301 Figure 11. This figure, from Ninis et al. (this volume), shows spectacular flights of Late Pleistocene 

302 wave-cut marine terraces along North Island’s southern coastline, products of ongoing 

303 subduction and upper-plate faulting within the HSM (image provided courtesy of Ninis et al. and 

304 with permission from the Royal Society of New Zealand. doi:10.1080/00288306.2021.2011329).

305 Tables

306 Table 1.  Summary of the main themes covered by the scientific contributions to the New Zealand 

307 Journal of Geology and Geophysics Special Issue: Understanding Sedimentary Systems and 

308 Processes of the Hikurangi Subduction Margin; from Trench to Back-Arc, Volume 1.
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Figure 1.  New Zealand and the Hikurangi Subduction Margin (HSM) in the South-West Pacific. Background 

map from Google Earth Pro V 7.3.4.8248 (July 16, 2021), -31.38°S, 163.61°E, Eye altitude 7211 km, 

February 15, 2022). 
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Figure 2.  Bathymetric and topographic map of North Island, New Zealand showing: 1) The main morpho-

structural and morpho-sedimentary elements of the HSM; 2) The study areas of the papers contained within 

this special issue, and 3) The location of the geological cross-section of Figure 3. Mapping data come from 

the 250 m resolution gridded bathymetric data set 2016 from NIWA (Mitchell et al., 2012). 
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Figure 3.  Schematic cross-section of the Hikurangi subduction margin showing: 1) The main subduction-

related morpho-structural features; and 2) The relative distribution across the margin of the studies 

published within the special issue.  Modified from Chanier et al. (1999) by Bailleul et al. (2007) and 

Claussmann et al. (2021, this volume).  Subdivisions of the subduction wedge follows McArthur et al. 

(2019). C.R. – Coastal Ranges, corresponding roughly to the trench-slope break of the margin; A.P. – 

Accretionary prism and protothrust zone (Barnes et al., 2018). 
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Figure 4. This figure, from Claussmann et al. (this volume), shows impressive coastal exposures of Middle 

Miocene shelf-derived MTDs infilling syn-subduction intra-slope basins (image provided courtesy of 

Claussmann et al. and with permission from the Royal Society of New Zealand. 

doi:10.1080/00288306.2021.1918729). 
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Figure 5. This figure, from Caron et al. (this volume), outlines the high diversity of microfacies that can be 

found in the Early Miocene limestones of the Coastal Ranges, pointing out contrasted and tectonically-

controlled shallow water depositional settings on top of the early Hikurangi subduction wedge (image 

provided courtesy of Caron et al. and with permission from the Royal Society of New Zealand. 

doi:10.1080/00288306.2021.1960865). 
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Figure 6. This figure, from Griffin et al. (this volume), illustrates comparisons between spectacular 

outcropping thin-bedded Miocene turbidites along the central Wairarapa coastline, and similar strata that 

were imaged by a FMI(™) resistivity image-log within the nearby, offshore Titihaoa-1 drillhole. Such rocks 

and sedimentary lithofacies are widespread within trench-slope basins in the HSM (image provided courtesy 

of Griffin et al. and with permission from the Royal Society of New Zealand. 

doi:10.1080/00288306.2021.1932527). 
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Figure 7. This figure, from McArthur et al. (this volume), is a schematic reconstruction of the evolution of a 

trench-slope basin based on a detailed sedimentological analysis and systematic mapping of a Miocene field 

analogue outcropping within the Coastal Ranges (image provided courtesy of McArthur et al. and with 

permission from the Royal Society of New Zealand. doi:10.1080/00288306.2021.1977343). 
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Figure 8. This figure, from Tek et al. (this volume), displays several maps showing the seafloor expression of 

an overbank sediment wave field for a part of the deep-water Hikurangi Channel covered by 3D seismic data 

(image provided courtesy of Tek et al. and with permission from the Royal Society of New Zealand. 

doi:10.1080/00288306.2021.1978509). 
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Figure 9. This figure, from Dutilleul et al. (this volume), locates IODP sites of Expeditions 372/375 and the 

Tuaheni submarine landslide Complex on a bathymetric map of the northern part of the HSM (image 

provided courtesy of Dutilleul et al. and with permission from the Royal Society of New Zealand. 

doi:10.1080/00288306.2021.1990088). 
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Figure 10. This figure, from Marden et al. (this volume), corresponds to the pollen spectra identified from a 

Late Pleistocene upland paleolake recently discovered onshore the HSM (image provided courtesy of Marden 

et al. and with permission from the Royal Society of New Zealand. doi:10.1080/00288306.2021.1947327). 
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Figure 11. This figure, from Ninis et al. (this volume), shows spectacular flights of Late Pleistocene wave-cut 

marine terraces along North Island’s southern coastline, products of ongoing subduction and upper-plate 

faulting within the HSM (image provided courtesy of Ninis et al. and with permission from the Royal Society 

of New Zealand. doi:10.1080/00288306.2021.2011329). 
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