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Abstract  
 

Calcific aortic valve stenosis (CAS) is the most common 

valvular heart disease worldwide, associated with cardiovascular 

morbidity and mortality. This pathology results from fibro-

calcific degeneration of the aortic valve leaflets, causing major 

cardiovascular complications. To date, drug therapies have been 

ineffective in preventing the progression of CAS and aortic valve 

replacement remains the mainstay of management for patients 

with symptomatic CAS. Unfortunately, not all patients are 

eligible for this procedure, which is associated with a greater risk 

of mortality for subjects presenting comorbidities. A better 

understanding of the mechanisms responsible for CAS 

pathogenesis is therefore of crucial importance to develop new 

therapeutic strategies. Inflammation is a key driver of aortic 

valve fibrosis and calcification. Macrophages, which play critical 

roles in the induction and resolution of sterile inflammation, may 

therefore represent interesting therapeutic targets. Once 

infiltrated within the aortic leaflet, these dynamic cells can adopt 

a pro-inflammatory M1 phenotype or switch toward an 

alternatively activated M2 phenotype, resulting in wound healing 

and anti-inflammatory activities. This plasticity complicates the 

efforts to understand their role in the initiation and progression 

of CAS. This book chapter aims to summarize our current 

knowledge regarding the role played by macrophage subsets on 

aortic valve remodelling. 
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Introduction 
 

Calcific aortic valve stenosis (CAS) is the most prevalent 

valvular heart disease worldwide [1]. This pathology is 

characterized by slowly progressive fibro-calcific remodelling of 

the valve leaflets. Over the years, the disease evolves to severe 

valve calcification with impaired leaflet motion and vast blood 

flow obstruction, which leads to ventricular hypertrophy. 

Untreated, symptomatic CAS is associated with a dismal 

prognosis. Aortic valve replacement is the only treatment shown 

to improve survival for selected and eligible patients. Before 

symptoms occur, aortic stenosis is preceded by a silent, latent 

phase characterized by a slow progression at the molecular, 

cellular, and tissue levels. A better understanding of the 

pathophysiology of this latent phase of CAS is needed to develop 

new therapeutic strategies that would slow disease progression. 

 

A growing body of evidence indicates that a close association 

exists between inflammation and CAS and that immune 

signalling, in particular that linked to infiltrated macrophages, 

may be a viable target for therapeutic intervention. Macrophages 

are present in healthy valves as a central component of the 

immune surveillance cell system. Once infiltrated, these dynamic 

cells play critical roles in the induction and resolution of sterile 

inflammation. Macrophages exhibit a considerable degree of 

plasticity depending on signals from the extracellular 

environment. Indeed, they can adopt a pro-inflammatory M1 

phenotype in response to TH1 cytokines and switch toward an 

alternatively activated M2 phenotype when meeting Th2 

cytokines, resulting in wound healing and anti-inflammatory 

activities. Macrophages’ polarization is quickly reversible. 

Indeed, it takes less than 24 hours for macrophages cultured in 

vitro to switch from one phenotype to another in response to 

appropriate cytokines [2]. Infiltration of macrophages is 

enhanced in the human calcified aortic valves [3]. In this context, 

the recent observation that both pro-inflammatory M1 and anti-

inflammatory M2 cytokines are upregulated in samples of 

calcified aortic valves compared with that in non-calcified 

valves, suggests that both M1 and M2 phenotypes may influence 

CAS. This book chapter aims to summarize our current 
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knowledge regarding the role played by macrophage subsets on 

aortic valve remodelling. 

 

Pathophysiology of CAS  
 

The human aortic valve is composed of three thin and flexible 

leaflets. Each leaflet is composed of three layers of extracellular 

matrix, named fibrosa, spongiosa, and ventricularis [4], covered 

by an outer layer of valvular endothelial cells (VECs) (Figure 1). 

The entire structure of each leaflet is less than 1 mm thick. The 

three layers composing the leaflets are principally populated with 

quiescent valvular interstitial cells (qVICs) [5]. The trilaminar 

structure of the leaflets determines the biomechanical properties 

of the aortic valve. Located on the aortic side of the valve, the 

lamina fibrosa is rich in circumferentially oriented type I and 

type III collagen fibrils. This composition helps to maintain 

structural integrity and transfer pressure load to the aortic root. 

The lamina ventricularis, which is located on the ventricular side 

of the leaflet, contains radially aligned collagen and elastin 

fibers. This composition provides more compliance, allowing the 

valve to expand under pressure [6]. The spongiosa, which has a 

high proteoglycan content, is located between the fibrosa and 

ventricularis [7].  

 

During the cardiac cycle, the mechanical stresses applied to the 

aortic valve can disrupt the endothelial layer, allowing the 

infiltration of oxidized lipids (ox-LDL) and immune cells [8,9]. 

Monocytes and lymphocytes are the main cells that adhere and 

infiltrate the sub-endothelium. Once infiltrated, they differentiate 

into macrophages and activated T cells able to release growth 

factors and pro-inflammatory cytokines such as TGF-β, IL-1β, 

IL-6 and TNF-α. In response to TGFβ, qVICs differentiate into 

activated VICs (aVICs), displaying a myofibroblastic phenotype, 

characterized by the expression of α-smooth muscle actin (α-

SMA). The concomitant exposure to pro-inflammatory cytokines 

promotes their proliferation and release of matrix 

metalloproteinases, inducing fibrosis, thickening and increased 

valvular stiffness [9-11]. This phenomenon is generally 

associated with a process of biomineralization during which 

aVICs differentiate toward osteoblast-like phenotype (obVICs). 
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During this process, aVICs downregulate their expression of α-

SMA and acquire the capacity to express key osteogenic markers 

such as alkaline phosphatase (ALP), bone morphogenetic protein 

2 (BMP2), Runt-related transcription factor 2 (RUNX2, a marker 

of terminal osteoblastic differentiation) and osteopontin (OPN) 

[12,13]. Through this phenomenon, they acquire the capacity to 

secrete a bone-like matrix able to calcify. The progressive 

calcification reduces the elasticity of aortic valve leaflets and 

over time narrows the aortic valve opening. Symptoms generally 

occur when the narrowing of the valve is severe. 

 

 
 

Figure 1: Structure and composition of aortic valve leaflets. PGs: 

proteoglycans, qVICs: quiescent valvular interstitial cells, VECs: valvular 

endothelial cells. 

 

Macrophages Plasticity  
 

Once infiltrated within the leaflet, macrophages can acquire 

distinct functional phenotypes as a reaction to specific micro-

environmental stimuli. In response to Th1 cytokines, such as 

interferon-gamma (IFN-γ), they usually take a classically 

activated M1 phenotype. Macrophages with an M1 phenotype 

display cytotoxic and tissue-damaging pro-inflammatory 

functions after the release of pro-inflammatory mediators such as 

IL-1β, IL-6, TNFα or reactive oxygen species. Major markers for 
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the identification of the M1 phenotype are CD11c, CD80, CD86, 

CD64, CD16, CD32 and nitric oxide synthase (iNOS). In 

response to Th2 cytokines (e.g, IL-4 and IL-13) they can adopt 

an alternatively activated M2 phenotype. Macrophages with a 

M2 phenotype display the ability to secrete anti-inflammatory 

cytokines such as IL-1 receptor antagonist (IL1ra), IL-10, 

CCL22 or TGF-β1. Their activity is usually associated with 

wound healing and anti-inflammatory properties [14]. Major 

markers for the identification of the M2 phenotype are CD163 

and CD206. The next chapter provides a summary of the most 

recent experimental data evaluating the influence of M1 and M2 

macrophages on the calcification of the resident cells of the 

aortic valve (Figure 2).  

 

M1 Macrophages and Aortic Valve 

Calcification  
 

Inflammation is a potent driver of aortic valve calcification [15]. 

Indeed, the exposure in vitro to recombinant TNF-α, IL-6, IL-1β 

or IL-8 has been repeatedly reported to favour the osteogenic 

differentiation and calcification of primary human VICs (hVICs) 

[16-20]. These observations have led to a general hypothesis that 

M1 macrophages may promote VIC-to-osteoblast differentiation 

and subsequent valve calcification via paracrine pro-

inflammatory signalling. 

 

Confirming this hypothesis, in 2017 Li et al. reported that 

conditioned medium (CM) from M1 macrophages (M1-CM) 

enhances VICs expression of several osteoblastic markers, 

including BMP2, ALP, and OPN as compared to exposure to 

CM from unpolarised macrophages (M0-CM) [3]. The fact that 

neutralizing antibodies against TNF-α or IL-6 blocked hVICs 

osteogenic differentiation and mineralization, indicated that the 

procalcific effects of M1-CM are mediated, at least in part, by 

TNF-α and IL-6. These data were confirmed in 2020 when Grim 

et al. further described that TNF-α and IL-1β in M1-CM indeed 

deactivate aVIC, as evidenced by a robust reduction of αSMA 

expression and promote their proliferation, while IL-6 in M1-

CM subsequently triggers their differentiation toward obVICs 

able to express RUNX2 and OPN [21]. These data indicate that 
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inflammatory M1 macrophages may be responsible for the 

switch from fibrosis to calcification during aortic valve stenosis 

progression through their ability to drive VICs myofibroblast-to-

osteogenic transition.  

 

Interestingly, M1-polarized macrophages not only communicate 

with VICs through the secretion of cytokines but also by 

releasing extracellular vesicles (EVs). In 2022, Xia et al. 

reported that the internalization of EVs produced by M1 

macrophages (M1-EVs) increased calcium nodule formation and 

expression of osteogenesis-related genes in VICs, including 

RUNX2, BMP2 and OPN, compared with EVs from control 

macrophage [22]. In this study, the expression of α-SMA and 

collagen I in VICs was significantly increased in response to 

M1-EVs, suggesting that M1-EVs promote both the osteogenic 

and fibrotic processes of VICs. The authors identified that 

tsRNA-5006c, a novel type of noncoding RNA cleaved from 

tRNA (tsRNAs), was significantly up-regulated in M1-EVs and 

that its deletion reduced VICs osteogenic and fibrotic markers as 

well as nodule formation, indicating that M1-EVs promote VICs 

mineralization by delivering tsRNA-5006c. In addition, 

incubation of M1-EVs with tsRNA-5006c inhibitor led to a 

significant reduction in the expression of markers of 

autophagy/mitophagy activation, suggesting that the enhanced 

osteogenic differentiation capacity of M1-EVs tsRNA-5006c 

may be linked to autophagy/mitophagy. The data are in line with 

previous studies showing that excessive mitophagy/autophagy 

exacerbates CAS progression [23].  

 

In 2016, Li et al reported that M1-polarization in CAS correlates 

with the upregulation of miR-214, a miRNA which expression is 

essential for M1-directed polarization [24]. Upregulation of miR-

214 in aortic valve samples is generally associated with 

decreased expression of its target gene TWIST-1, a transcription 

factor that prevents hVICs osteoblastic differentiation by 

functionally antagonizing RUNX2 [25]. From this observation, 

Li et al. hypothesized that the release of miR-214 by 

macrophages may promote CAS development. They confirmed 

that the co-culture with M1 macrophages or M1-EVs decreased 

TWIST-1 expression in VICs and favoured their osteogenic 
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transition as evidenced by the elevation of ALP activity. In line 

with these data, TWIST1 expression was higher, while ALP 

activity was lower, in VICs exposed to EVs from miR-214-

silenced M1 macrophages compared to those exposed to M1-

EVs. These effects were abrogated in VICs silenced for 

TWIST1. Intravenous injections of a miR-214 inhibitor in 

hypercholesterolemic apoE-/- mice upregulated valvular 

TWIST-1 expression and reduced aortic valve calcification. 

These findings suggest that M1 macrophages’ EVs can promote 

aortic valve calcification by delivering miR-214 to VICs. 

 

It is interesting to note that physical interactions between 

macrophages and VICs promote the calcification process 

induced by macrophages’ procalcific secretions [26]. Indeed, in a 

study published in 2020, Raddatz and colleagues showed that the 

direct co-culture with macrophages promoted VICs osteogenic 

transition (evidenced by the elevation of RUNX2 expression) as 

compared to a co-culture in transwell systems (no physical 

contact). In this study, the physical contact of macrophages with 

VICs was associated with a marked decrease in VICs expression 

of STAT3β, an alternative splice product of the STAT3 gene, 

displaying the ability to bind and inhibit RUNX2 activity [27]. 

Interestingly, treatment of VICs monoculture with an inhibitor of 

STAT3 phosphorylation increased RUNX2 transcription, 

suggesting that STAT3 mediates the connection between 

macrophage-secreted factors and RUNX2 expression. In line 

with these data, in calcified regions of diseased aortic valves, the 

elevation of RUNX2 expression negatively correlated with that 

of STAT3β. Further investigation of STAT3 and macrophage-

driven inflammation as therapeutic targets in CAS is warranted.  

 

M2 macrophages and aortic valve calcification  
 

In 2023, Wu et al. reported that the exposure of qVICs to CM 

from M2 macrophages (M2-CM) promotes their differentiation 

toward myofibroblasts (aVICs) as evidenced by the elevation α-

SMA expression but has no impact on VICs RUNX2 expression 

[28]. This observation suggests that although M2 macrophages 

secretions may promote myofibroblast activation, they may not 

directly contribute to osteogenesis induction. In line with these 
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data, areas staining positive for the M2 marker CD163 correlated 

with α-SMA expression in histological samples of CAS.  

 

M2 macrophages are known to facilitate the resolution of 

inflammation and tissue reconstruction via secreting IL-10 and 

TGF-β [29,30]. Aortic valve inflammation and degeneration 

negatively correlate with plasma levels of IL-10 [31] and single 

nucleotide polymorphisms (SNPs) of IL-10 associated with 

CAS. Interestingly, cusps from CAS patients also contain higher 

levels of TGF-β1 than noncalcified normal cusps [32]. 

Transforming growth factor-β is a well-known fibrosis 

stimulative factor involved in tissue-repairing processes and 

immune homeostasis regulation [33]. In vitro, the exposure to 

recombinant TGF-β promotes qVICs differentiation toward 

myofibroblastic aVICs [34]. The addition of TGF-β1 to primary 

VICs also promotes VICs mobility, aggregation, formation of 

nodules enriched in ALP, and subsequent mineralization of these 

nodules [32]. In this model, blockade of TGF-β1-induced 

apoptosis with a caspase inhibitor significantly inhibits the 

calcification but has no effect on nodule formation. By contrast, 

the exposure to an actin-depolymerizing agent named 

cytochalasin D inhibits nodule formation but has no impact on 

calcification. Together these data indicate that strategies aiming 

at blocking M2-derived TGF-β activity may protect the valve 

from fibro-calcic remodelling. 

 

In 2016, Villa-Bellosta and colleagues elegantly demonstrated 

that macrophages polarized in vitro toward a M2 phenotype are 

better able to trigger the synthesis of pyrophosphate (PPi) than 

M1 macrophages [2]. PPi is a calcification inhibitor that is 

produced after adenosine triphosphate (ATP) hydrolysis by 

ectoenzyme nucleotide pyrophosphatase/phosphodiesterase-1 

(eNPP1) and is then degraded to Pi by tissue non-specific 

alkaline phosphatase. In Villa-Bellosta et al.’s study, 

alternatively activated M2 macrophages increased extracellular 

PPi levels in vitro through increased ATP release and eNPP1 

overexpression. If this effect was shown to protect vascular 

smooth muscle cells cultured in the presence of M2 macrophages 

from calcification, its impact on VICs calcification remains to be 

demonstrated.  
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Figure 2: Dualistic role of macrophages in aortic valve calcification: A 

schematic representation. ALP: alkaline phosphatase, aVICs: activated VICs, 

α-SMA: α-smooth muscle actin, BMP2: bone morphogenetic protein 2, EVs: 

extracellular vesicles, IL-1β: interleukin 1β, IL-6: interleukin 6, IL-10: 

interleukin 10, M1 MФ: classically-activated M1 macrophages, M2 MФ: 

alternatively-activated M2 macrophages, obVICs: osteogenic VICs, OPN: 

osteopontin, PPi: pyrophosphate, qVICs: quiescent VICs, RUNX2: Runt-

related transcription factor 2, TGF-β: transforming growth factor β, TNF-α: 

tumor necrosis factor α. 

 

Targeting the M1/M2 Balance to prevent CAS  
 

Over the last decade, our understanding of 

monocytes/macrophages’s roles in CAS has improved 

considerably. In this regard, the therapeutic potential of 

approaches targeting macrophage recruitment and polarization to 

prevent the onset or progression of CAS is now being explored. 

Data from in vitro and ex vivo experiments have already 

identified several promising therapeutic targets, such as AFAP1-

AS1 [35] and NLR family pyrin domain-containing 3 (NLRP3) 

[36]. 
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AFAP1-AS1 is a long non-coding RNA (lncRNA) which 

overexpression in macrophages promotes the M1 but inhibits the 

M2 polarization [35]. In vitro, exposure to CM from AFAP1-

AS1-overexpressing macrophages, which display a M1-like 

phenotype, promotes VICs osteogenic transition and 

calcification. By contrast, exposure to conditioned medium from 

AFAP1-AS1-depleted macrophages, which display a M2-like 

phenotype, inhibits VICs osteogenic differentiation and 

calcification. Future studies should determine whether targeting 

AFAP1-AS1 is a feasible strategy to reduce CAS. 

 

The pro-inflammatory NLRP3 inflammasome pathway is 

activated in circulating monocytes of CAS patients [37]. In ApoE 
−/− mice fed a high-fat diet, inhibition of NLRP3 activity thanks 

to an intraperitoneal injection of 2.5 mg/kg/day of the NLRP3 

inhibitor CY-09 prevented the shift of macrophages towards the 

M1 phenotype, downregulated the levels of the pro-

inflammatory factors IL-6 and TNF-α and reduced aortic valve 

calcification [36]. This study offers a proof-of-concept that 

pharmacological inhibition of the NLRP3 inflammasome is a 

feasible strategy for modulating macrophage polarization in 

order to alleviate CAS. 

 

Conclusion  
 

Over the last decade, it became clear that the diversity of 

macrophage subtypes complicates our understanding of the 

pathogenesis of CAS, a disorder for which effective treatments 

are still lacking. M1 macrophages’ secretion of pro-

inflammatory cytokines favours the onset and progression of 

both fibrosis and calcification, while the capacity of M2 

macrophages to resolve inflammation may help to prevent CAS. 

These observations, together with the epidemiological data 

linking CAS to systemic inflammation, suggest that targeting 

inflammation may help to slow down CAS progression. 

However, despite the widespread use of biologicals targeting 

inflammatory cytokines for a variety of inflammatory conditions, 

there is yet no information available on these drugs on CAS in 

humans. In this regard, observational studies of CAS in patients 

treated with biologicals targeting inflammation for other reasons 



Immunology and Cancer Biology 

12                                                                                www.videleaf.com 

may provide valuable information that may help to design an 

adequately powered concept clinical trial with CAS as a primary 

endpoint. For instance, it is estimated that over 2 million patients 

suffering from rheumatoid arthritis are treated every year with 

biologicals targeting TNF-α, and additional patients receive 

biologicals targeting IL-1β, and IL-6. The age range of these 

patients at initiation of therapy may allow studying the impact on 

CAS. 

 

In recent years, an increasing number of experimental studies 

evaluated the therapeutic potential of approaches targeting 

macrophages recruitment and polarization to prevent the onset or 

progression of CAS. Data from these studies identified AFAP1-

AS1 and NLRP3 as potential therapeutic targets able to reduce 

the pro-calcific M1 polarization. In this context, it is interesting 

to note that according to the most recent literature M2 

macrophages may display dualistic actions on CAS. On the one 

hand, they may promote the fibrocalcic remodelling of the aortic 

valve by secreting high level of TGF-β, while on the other hand, 

their capacity to secrete high levels of IL-10 and PPi may help to 

prevent CAS. Therefore, to date, it is not clear whether 

increasing the M2 polarization should be a goal to achieve. 

Further studies are warranted to evaluate this aspect. 
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