

Unexpected westward range shifts in European forest plants link to nitrogen deposition

Pieter Sanczuk, Kris Verheyen, Jonathan Lenoir, Florian Zellweger, Jonas Lembrechts, Francisco Rodríguez-Sánchez, Lander Baeten, Markus Bernhardt-Römermann, Karen de Pauw, Pieter Vangansbeke, et al.

► To cite this version:

Pieter Sanczuk, Kris Verheyen, Jonathan Lenoir, Florian Zellweger, Jonas Lembrechts, et al.. Unexpected westward range shifts in European forest plants link to nitrogen deposition. *Science*, 2024, 386 (6718), pp.193-198. 10.1126/science.ado0878 . hal-04734750

HAL Id: hal-04734750

<https://u-picardie.hal.science/hal-04734750v1>

Submitted on 10 Nov 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

1 **Unexpected westward range shifts in European forest plants links to nitrogen deposition**

2 Pieter Sanczuk^{1*}, Kris Verheyen¹, Jonathan Lenoir², Florian Zellweger³, Jonas J. Lembrechts^{4,5}, Francisco
3 Rodriguez-Sanchez⁵, Lander Baeten¹, Markus Bernhardt-Römermann^{7,8}, Karen De Pauw¹, Pieter
4 Vangansbeke¹, Michael P. Perring^{9,10}, Imre Berki¹¹, Anne Bjorkman^{12,13}, Jörg Brunet¹⁴, Markéta
5 Chudomelová¹⁵, Emiel De Lombaerde¹, Guillaume Decocq², Thomas Dirnböck¹⁶, Tomasz Durak¹⁷,
6 Caroline Greiser^{18,19}, Radim Hédl^{15,20}, Thilo Heinken²⁰, Ute Jandt^{22,23}, Bogdan Jaroszewicz²⁴, Martin
7 Kopecký^{25,26}, Dries Landuyt¹, Martin Macek²⁵, František Máliš^{27,28}, Tobias Naaf²⁹, Thomas A. Nagel³⁰, Petr
8 Petřík^{31,32}, Kamila Reczyńska³³, Wolfgang Schmidt³⁴, Tibor Standová³⁵, Ingmar Staude^{23,36}, Krzysztof
9 Świerkosz³⁷, Balázs Teleki³⁸, Thomas Vanneste¹, Ondrej Vild¹⁵, Donald Waller³⁹, Pieter De Frenne¹

10 *corresponding author: Pieter Sanczuk ; Pieter.Sanczuk@UGent.be

11 **Affiliations:**

12 ¹Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium

13 ²UMR CNRS 7058 "Ecologie et dynamique des systèmes anthropisés" (EDYSAN), Université de Picardie
14 Jules Verne, Amiens Cedex 1, France

15 ³Forest Resources and Management, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

16 ⁴Research Center on Plants and Ecosystems (PLECO), University of Antwerp, Wilrijk, Belgium

17 ⁵Ecology & Biodiversity (E&B), Utrecht University, Utrecht, the Netherlands

18 ⁶Universidad de Sevilla, Departamento de Biología Vegetal y Ecología, Sevilla, Spain

19 ⁷Friedrich Schiller University Jena, Institute of Ecology and Evolution, Jena, Germany

20 ⁸iDiv, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

21 ⁹Environment Centre Wales, UKCEH (UK Centre for Ecology and Hydrology), Bangor, UK

22 ¹⁰The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia

23 ¹¹Faculty of Forestry, Institute of Environmental and Earth Sciences, University of Sopron, Sopron,
24 Hungary

25 ¹²Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

26 ¹³Gothenburg Global Biodiversity Centre, Gothenburg, Sweden

27 ¹⁴Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden

28 ¹⁵Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Brno, Czech
29 Republic

30 ¹⁶Ecosystem Research and Environmental Information Management, Environment Agency Austria,
31 Vienna, Austria

32 ¹⁷Institute of Biology, University of Rzeszów, Rzeszów, Poland

33 ¹⁸Department of Physical Geography, Stockholm University, Stockholm, Sweden

34 ¹⁹Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå,
35 Sweden

36 ²⁰Department of Botany, Palacký University in Olomouc, Olomouc, Czech Republic

37 ²¹Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

38 ²²Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg,
39 Halle/Saale, Germany

40 ²³German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Leipzig, Germany

41 ²⁴Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland

42 ²⁵Department of Geoecology, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech
43 Republic

44 ²⁶Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6 - Suchdol,
45 Czech Republic

46 ²⁷Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia

47 ²⁸National Forest Centre, Zvolen, Slovakia

48 ²⁹Leibniz Centre for Agricultural Landscape Research (ZALF), Muencheberg, Germany

49 ³⁰Department of forestry and renewable forest resources, Biotechnical Faculty, University of Ljubljana,
50 Ljubljana, Slovenia

51 ³¹Department of vegetation ecology, Czech Academy of Sciences, Institute of Botany, Brno, Czech
52 Republic

53 ³²Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague,
54 Czech Republic

55 ³³Independent Researcher, Wrocław, Poland

56 ³⁴Department of Silviculture and Forest Ecology of the Temperate Zones, University of Goettingen,
57 Göttingen, Germany

58 ³⁵Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, ELTE Eötvös
59 Loránd University, Budapest, Hungary

60 ³⁶Institute of Biology, Leipzig University, Leipzig, Germany

61 ³⁷Museum of Natural History, University of Wrocław, Wrocław, Poland

62 ³⁸HUN-REN-UD Biodiversity and Ecosystem Services Research Group, University of Debrecen,
63 Debrecen, Hungary

64 ³⁹Botany, University of Wisconsin - Madison, Madison, USA

65 **Abstract:** Climate change is commonly assumed to induce species' range shifts towards the poles. Yet,
66 other environmental changes may affect the geographical distribution of species in unexpected ways. Here
67 we quantify multi-decadal shifts in the distribution of European forest plants, and link these shifts to key
68 drivers of forest biodiversity change: climate change, **atmospheric deposition (nitrogen and sulphur)** and
69 forest canopy dynamics. Surprisingly, westward distribution shifts were **2.6 times** more likely than
70 northward ones. **Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the**
71 **recovery from past acidifying deposition,** best explain westward movements. Biodiversity redistribution
72 patterns appear complex and are more likely driven by the interplay among several environmental changes
73 than due to the exclusive effects of climate change alone.

74 **Key words:** **Acidification**, atmospheric pollution, **eutrophication**, nitrogen deposition, climate change,
75 conservation policy, isotherms, forestREplot, forest ecosystems, species range shifts, **sulphur deposition**,
76 understorey plants

77 **One Sentence Summary:** Nitrogen deposition rather than climate change explains unexpected westward
78 range centroid shifts of European forest plants

79 **Main text**

80 One of the most prominent biogeographical changes of the 21st century is the large-scale redistribution of
81 plants and animals in response to changes in the climate system (1). Warming temperatures are causing
82 many terrestrial species to move towards higher latitudes and elevations, resulting in a reordering of
83 species' distributions (1–3) and the emergence of novel communities (4). Empirical evidence has been
84 reported for a wide range of ecosystems and taxa - from poleward and upslope range shifts in temperate
85 regions (5, 6) and high-latitude boreal biomes (7) to upslope shifts in mountain vegetation (8) – suggesting
86 an emerging link with anthropogenic climate warming (2, 9).

87 According to the most recent global synthesis (1), terrestrial species are shifting towards higher latitudes at
88 an average rate of 1.11 km year⁻¹. This trend, however, lacks statistical significance, possibly because
89 estimates are often blurred by variation in methodological attributes (1, 10). Alternatively, species'
90 redistributions in geographical directions that are orthogonal (i.e., west-east oriented) or even inverse (e.g.,
91 equatorward) to the moving isotherms are less likely to be detected from commonly studied range boundary
92 shifts along thermal transects of latitude and elevation alone (11, 12). Indeed, other prominent
93 environmental changes such as **atmospheric (nitrogen and sulphur)** deposition and forest disturbances show
94 spatial patterns that are weakly correlated to the geographic direction of climate change (13–15), and can
95 also influence demographic processes of colonization and local extinction (1, 12, 16). To what extent these
96 other environmental changes are contributing to species range shifts remains largely unquantified (17–19).

97 Here we quantify the rate and geographic direction of range shifts in 266 European forest understory plant
98 species using multi-decadal community data collected in mature forest stands across 2,954 resurveyed semi-
99 permanent vegetation plots (20) (**Fig. 1A**). Plant community data were derived from baseline surveys
100 recorded between 1933 and 1994 and paired resurveys carried out after the baseline surveys between 1987
101 and 2017 (median [min – max] inter-survey interval: 39 [13 – 67] years). We quantified shifts of species'
102 distributions within the spatial extent of the study area based on range centroids, i.e., the abundance-
103 weighted geometric center of a species' distribution (**Fig. S1**). In contrast to the more frequent
104 quantification of range boundary shifts at the trailing or leading edges, analyzing centroid shifts allows to
105 obtain more robust estimates of the magnitude and geographic direction of complex distribution shifts (6,
106 11, 21). This is important, because range shift estimates from leading and trailing edges alone are more
107 prone to bias from stochastic processes or low sample sizes that may blur overall biogeographical trends
108 (11).

109 **The rate and geographic direction of centroid shifts**

110 To calculate centroid shift of each species, we first located the position of the abundance-weighted range
111 centroid at the time of the baseline survey and the resurvey, and assessed the magnitude (i.e., the distance)
112 and geographical direction (i.e., the bearing) of the centroid shift over time. Centroid shifts were expressed
113 as the absolute shift rate ($km\ year^{-1}$) as well as the projected south-north ($km\ north\ year^{-1}$) and west-east
114 ($km\ east\ year^{-1}$) rate (schematically explained in **Fig. S1**). Centroid shifts were calculated for the 266 species
115 that were recorded in $\geq 1\%$ of the plots to increase robustness of the estimates. The directionality (i.e.,
116 angular dispersion of the directions of centroids shifts) across all species was tested using the Rayleigh's r
117 coefficient, a circular regression coefficient which quantifies how uniform and isotropic the directions of
118 centroid shifts are (Rayleigh's $r = 1$ if all species are moving in the same direction while Rayleigh's $r = 0$
119 with random directional movements, i.e., anisotropic, meaning that directions of shift can be drawn from a
120 uniform circular distribution).

121 Species' centroid shifts were first compared to the velocity and direction of climate change realized over
122 the course of the study period. Spatially explicit climate change velocities were calculated by climate
123 analogue mapping (22, 23), an approach that is theoretically equivalent to the mapping of species centroid
124 shifts (**Fig. S1**). In contrast to the frequent calculation of climate-change velocities based on gradients of
125 isotherms alone (3, 24), climate analogue mapping allows to consider consolidated changes of multiple
126 bioclimatic variables at the same time. For example, we here simultaneously consider changes in maximum
127 growing-season temperatures, minimum winter temperatures and growing-season precipitation as one
128 measure of the climate change velocity between the baseline survey and resurvey periods (**Fig. S2**). This is
129 highly relevant because plants respond not only to warming temperatures but also to alterations in
130 precipitation regimes. In this method, for all resurveyed vegetation plots, a grid search (at $4\ km \times 4\ km$
131 resolution) was performed to map all raster cells within the study area in which the climatic conditions in
132 the resurvey period are similar (i.e., show no statistical difference) to a given plot's climate during the
133 baseline period (i.e., 'analogue climate conditions'). For each plot, we then located the position of the
134 nearest raster cell with analogue climatic conditions to calculate the velocity and geographic direction of
135 climate change over time. Identical to the centroid shifts, the climate change velocity for each plot was
136 expressed as the absolute shift velocity ($km\ year^{-1}$), as well as the projected south-north ($km\ north\ year^{-1}$)
137 and west-east ($km\ east\ year^{-1}$) velocity. The directionality of climate analogue shifts was tested using
138 Rayleigh's r coefficient as described above.

139 Centroid shifts across the 266 understory plant species varied between $0.006\ km\ year^{-1}$ (*Sympy whole*
140 *cordatum*) to $18.27\ km\ year^{-1}$ (*Abies alba* seedlings), and occurred at a mean rate of 3.56 (5% – 95%
141 quantile: 0.39 – $9.80\ km\ year^{-1}$ (**Fig. 2A, Data S1**). Surprisingly, two-thirds of the studied plant species
142 showed directional shifts along the west-east axis (Rayleigh's $r = 0.23$; $df = 265$; $p < 0.05$). Most of these

143 shifts were westward (39% of species), but we also noted many eastward shifts (23%). Southward shifts
144 (23%) were more frequent than northward shifts (15%). Westward range **centroid** shifts were thus **2.6 times**
145 more likely than the northward range shifts expected in response to climate change. The average south-
146 north rate of centroid shifts was slow but significantly equatorward (-0.63 [-4.30 – 2.89] km north year⁻¹;
147 one-sample t-test: $t = -4.36$, $df = 265$, $p < .001$), while the rate of west-east shifts was **1.8 times** faster and
148 significantly westward (-1.17 [-6.95 – 4.17] km east year⁻¹; one-sample t-test: $t = -4.90$, $df = 265$, $p < .001$).
149 The observed rates of centroid shifts **towards each cardinal direction were minimum 62% (southward shifts)**
150 **and maximum 70% (eastward shifts) faster than expected by chance as confirmed by a null-model approach**
151 **(Fig. S5).**

152 The climate significantly changed over the course of the study period in 2,949 of the 2,954 resurveyed
153 vegetation plots (99.8%) based on climate analogue mapping. Maximum growing-season temperatures
154 increased by an average of 1.59 [1.15 – 2.21] °C. Climate change took place at an average absolute velocity
155 of 0.66 (0.07 – 1.67) km year⁻¹ (Fig. 2B). Unsurprisingly, the dominant geographic direction of climate
156 change was north (40% of the plots; Rayleigh's $r = 0.29$; $df = 2,948$; $p < 0.05$). The south-north velocity of
157 climate change was also significantly poleward (0.24 [-0.72 – 1.94] km north year⁻¹; one-sample t-test: $t =$
158 18.15, $df = 2,948$, $p < .001$). The west-east climate change velocity was marginal but significantly eastward
159 (0.06 [-0.92 – 0.72] km east year⁻¹; one-sample t-test: $t = 5.55$, $df = 2,948$, $p < .001$) **and thus opposite to**
160 **the most common cardinal direction of centroid shifts of European forest plants.**

161 Neither the geographic direction nor the velocity of climate change was reflected in the species' centroid
162 shifts, **hinting towards the importance of other environmental changes**. Two prominent alternative drivers
163 of forest plant community changes are elevated atmospheric inputs of nitrogen and forest canopy cover
164 changes (16, 25–28), **with eutrophying effects of nitrogen complicated by recovery dynamics from past**
165 **acidification caused by the combined deposition of nitrogen and sulphur compounds** (29, 30). These drivers
166 show spatial patterns not confounded with the velocity of climate change (across all plots, pairwise
167 Spearman correlations between the south-north velocity of climate change *versus* the rates of nitrogen
168 deposition and forest canopy cover changes were only 0.04 and 0.01, respectively).

169 To better understand the potential drivers associated with **the reported changes in the geographical**
170 **distribution of species**, we related the rates of centroid shifts to the average rate of nitrogen **deposition**
171 **between the baseline survey and resurvey** ($kg\ N\ ha^{-1}\ year^{-1}$) extracted from **atmospheric deposition** maps at
172 0.1° resolution (c. 8 km × 8 km within the study area) (Fig. 1A), and to the observed rate of forest canopy
173 cover change at each site ($\% \text{ canopy cover increase year}^{-1}$), while also accounting for the velocity of climate
174 change (the absolute, south-north and west-east velocity) in a linear mixed-effects modeling framework.
175 **We furthermore tested for the potential confounding effect of past acidifying deposition, considering the**

176 known adverse effects on European forest plant communities (31). The acidifying deposition rate, however,
177 was highly correlated to the rate of nitrogen deposition over the course of the study due to partially shared
178 emission sources (Spearman correlation: 0.87; $n = 2,954$ plots), and their individual effects are therefore
179 difficult to tease apart in an observational study. We calculated species-specific experienced rates of
180 atmospheric (nitrogen and acidifying) deposition and forest canopy cover changes as the average rate across
181 all plots where the species was observed, weighted by the species' original abundance in the baseline time
182 period **survey** (Fig. S6 for a data flow chart).

183 **Model outputs** show that the absolute rate of centroid shifts was weakly but exclusively linked to the rate
184 of forest canopy change, with greater opening of the canopy enhancing centroid shifts (Fig. 3). The velocity
185 of climate change was not associated to the rates of centroid shifts. In contrast, the rate of nitrogen
186 deposition was significantly linked to the west-east rate of centroid shifts, with species that initially
187 experienced a lower nitrogen deposition rate across their distributions showing faster westward shifts (Fig.
188 3A). Variation partitioning revealed that the nitrogen deposition rate rather than the climate change velocity
189 explained most of the variation in the species' centroid shifts, **albeit** the proportion of variation explained
190 was small (Figs. 3B, S7). The estimated effects of past acidifying deposition on species centroid shifts were
191 nearly identical to the effects of the spatially correlated nitrogen deposition rate (Fig. S8). We are therefore
192 unable to distinguish with certainty whether centroid shifts were brought about by eutrophying rather than
193 changes in acidifying deposition, or a combination of both. In either case, however, atmospheric deposition
194 rates – and not the climate change velocities – were the superior predictors of westward species movements.

195 **Colonization and extinction centroids**

196 To shed light on the mechanisms driving centroid shifts, we decomposed centroid shifts into shifts attributed
197 to the individual contribution of colonization and local extinction. For this analysis, we introduce the
198 concept of colonization centroids (the centroid of plots newly colonized by a species, abundance-weighted
199 by the percentage cover in the resurvey) and extinction centroids (the centroid of plots in which a species
200 became extinct, abundance-weighted by the percentage cover in the baseline survey). Colonization and
201 extinction centroids were expressed as the projected distance from the species' baseline centroid position
202 in each geographic direction (*km north* and *km east*). From a biogeographical point of view, longer distances
203 reflect that colonization or local extinction events took place farther away from the baseline centroid,
204 suggesting that these processes occurred mostly in one preferred direction (schematically explained in Fig.
205 S1C).

206 The average absolute distance of colonization centroids (202.20 [28.30 – 478.46] km; n species = 202) was
207 larger than the average absolute distance of extinction centroids (82.22 [4.22 – 249.48] km; n species =

208 246; **Figs. 4, S9, S10**). Colonization centroids were also more **isotropic** across species (Rayleigh's $r = 0.32$;
209 $df = 201$; $p < 0.05$) than extinction centroids (Rayleigh's $r = 0.11$; $df = 245$; $p < 0.05$). This suggests that
210 colonization events were happening more in one preferred direction and occurred further away from
211 baseline range centroids (i.e., closer to range boundaries) compared to local extinctions.

212 Colonization along the west-east axis was most closely related to the nitrogen deposition rate (**Figs. S11**,
213 **S12**). Because the observed dominant direction of species' colonization was westward (39% of the species
214 colonized west, 21% east, 28% south and 12% north), colonization occurred more frequently for species
215 that **initially experienced** a lower rate of nitrogen depositions across their distributions. **This pattern is**
216 **possibly associated to the westward colonization of nitrogen generalist species that can take advantage of**
217 **eutrophic conditions such as observed in large parts of western Europe (Figs. 1A, S13)**. Indeed, linking the
218 colonization centroids to each species' ecological indicator value for nitrogen niche width (**with larger**
219 **values indicating generalist species with a broader niche**) (32) revealed that for nitrogen generalists in
220 particular, those that initially occurred in areas with a lower rate of nitrogen deposition have taken
221 advantage to move more westward (**Figs. 5, S14**). Nitrogen generalists that already occurred in areas with
222 higher nitrogen deposition (western Europe, **Figs. 1A, S13**) tended to remain in place without necessarily
223 moving westward. More specialist species, i.e. **those with narrow niche widths for nitrogen and** that often
224 also have smaller range sizes (33), have shown lower colonization rates across temperate Europe, allowing
225 generalist species to replace specialists (14). **Also the decreasing levels of acidifying deposition** (since the
226 **peak in the 1980s (34)**) **may have facilitated the recovery of species' ranges in formerly polluted regions**
227 **(30)**. Using our observational data, we cannot fully disentangle these recovery effects following past
228 acidification caused by both nitrogen and sulphur pollution from dynamics of eutrophication chiefly
229 involving nitrogen deposition. However, eutrophication may be the most likely driver, because (i) we show
230 that west-east colonization distances were statistically better linked to nitrogen deposition and the species'
231 **nitrogen niche width than to acidifying deposition and the species acidity niche width (Fig. S15)**; and (ii)
232 the vast majority of the vegetation plots appear to be relatively well buffered against soil acidification (**Fig.**
233 **S16**). Regardless of whether the driver of westward colonization chiefly involves eutrophying deposition
234 or facilitated by the recovery from past acidification, forest plant species native to regions with lower
235 deposition rates are more vulnerable to unanticipated range shifts in response to atmospheric pollution – a
236 key finding for forest biodiversity conservation policy.

237 Local extinction events along the south-north axis were preferentially located southward relative to the
238 species' baseline range centroid position, and thus closer to species' warm range limits (25% south *versus*
239 13% north) (**Fig. 4**). This trend was significantly associated with climate change and a higher rate of
240 nitrogen deposition (**Figs. S11, S12**). Local extinction events along the west-east axis, however, occurred

241 more often (28% east and 31% west). Eastward local extinctions occurred more commonly in species that
242 experienced a higher rate of nitrogen deposition across their distribution. Such nitrogen-mediated local
243 extinctions were amplified when forest canopies became more open. Velocities of climate change also
244 interacted with the rate of forest canopy cover change, in that local extinctions due to climate change
245 occurred more often in forests where the canopy cover decreased. This confirms the importance of tree
246 canopies buffering the impacts of environmental changes (35).

247 Our findings suggest that **atmospheric deposition** and forest canopy cover dynamics interact to determine
248 how forest plant species are shifting their ranges, and that these environmental changes induce shifts that
249 can be independent from isotherm shifts. This contradicts the idea that species have shifted ranges mainly
250 in response to warming air temperatures. Rather, other environmental changes, especially rates of
251 **atmospheric deposition** and forest canopy cover dynamics, have likely induced unexpected westward range
252 shifts in European forest plants. **Although it remains unclear whether the effect of atmospheric deposition**
253 **chiefly involves eutrophication or a recovery effect from past acidification due to both nitrogen and sulphur**
254 **pollution, our findings point at nitrogen deposition as the most likely driver explaining the westward range**
255 **shifts in European forest plants. Since the continued success of the United Nations air convention**
256 **(CLRTAP) and the European Union Emissions Ceiling Directive (NECD) in reducing nitrogen and sulphur**
257 **emission levels, prospective trends in climate change and atmospheric deposition are unlikely parallel, with**
258 **climate change outpacing the effects of atmospheric deposition on future species' range shifts. Accurate**
259 **and recent species range shift data will be key to adequately anticipate the respective impacts of climate**
260 **change and atmospheric deposition on biodiversity and ecosystem functioning. It is already clear, however,**
261 **that biodiversity redistribution patterns appear complex and are more likely driven by the interplay among**
262 **several environmental changes than due to the exclusive effect of climate change alone.**

263 **References:**

264 1. J. Lenoir, R. Bertrand, L. Comte, L. Bourgeaud, T. Hattab, J. Murienne, G. Grenouillet, Species better track
265 climate warming in the oceans than on land. *Nat. Ecol. Evol.* **4**, 1044–1059 (2020).

266 2. I. Chen, J. K. Hill, R. Ohlemüller, D. B. Roy, C. D. Thomas, Rapid Range Shifts of Species of Climate
267 Warming. *Science (80-.)* **333**, 1024–1027 (2011).

268 3. M. T. Burrows, D. S. Schoeman, L. B. Buckley, P. Moore, E. S. Poloczanska, K. M. Brander, C. Brown, J. F.
269 Bruno, C. M. Duarte, B. S. Halpern, J. Holding, C. V Kappel, W. Kessling, M. I. O'Connor, J. M. Pandolfi,
270 C. Parmesan, F. B. Schwing, W. J. Sydeman, A. J. Richardson, The Pace of Shifting Climate in Marine and
271 Terrestrial Ecosystems. *Science (80-.)* **334**, 652–656 (2011).

272 4. J. W. Williams, S. T. Jackson, Novel climates, no-analog communities, and ecological surprises. *Front. Ecol.
273 Environ.* **5**, 475–782 (2007).

274 5. C. Parmesan, N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, L. Kaila, J.
275 Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, M. Warren, Poleward shifts in geographical ranges of
276 butterfly species associated with regional warming. *Nature* **399**, 579–583 (1999).

277 6. J. Lenoir, P. A. Marquet, P. De Ruffray, H. Brisse, A Significant Upward Shift in Plant Species Optimum
278 Elevation During the 20th Century. *Science (80-.)* **320**, 1768–1772 (2008).

279 7. R. Virkkala, A. Lehikoinen, Patterns of climate-induced density shifts of species: poleward shifts faster in
280 northern boreal birds than in southern birds. *Glob. Chang. Biol.* **20**, 2995–3003 (2014).

281 8. S. Dullinger, A. Gatringer, W. Thuiller, D. Moser, N. E. Zimmermann, A. Guisan, W. Willner, C. Plutzar,
282 M. Leitner, T. Mang, M. Caccianiga, T. Dirnböck, S. Ertl, A. Fischer, J. Lenoir, J. Svenning, A. Psomas, D.
283 R. Schmatz, Extinction debt of high-mountain plants under twenty-first-century climate change. *Nat. Clim.
284 Chang.* **2**, 6–9 (2012).

285 9. C. Parmesan, G. Yohe, A globally coherent fingerprint of climate change impacts across natural systems.
286 *Nature* **421**, 37–42 (2003).

287 10. M. A. Rubenstein, S. R. Weiskopf, R. Bertrand, S. L. Carter, L. Comte, M. J. Eaton, C. G. Johnson, J. Lenoir,
288 A. J. Lynch, B. W. Miller, T. L. Morelli, M. A. Rodriguez, A. Terando, L. M. Thompson, Climate change and
289 the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts.
290 *Environ. Evid.* **12**, 1–21 (2023).

291 11. L. P. Shoo, S. E. Williams, J. Hero, Detecting climate change induced range shifts: Where and how should
292 we be looking? *Austral Ecol.* **31**, 22–29 (2006).

293 12. J. D. Ash, T. J. Givnish, D. M. Waller, Tracking lags in historical plant species' shifts in relation to regional
294 climate change. *Glob. Chang. Biol.* **23**, 1305–1315 (2017).

295 13. T. L. Greaver, C. M. Clark, J. E. Compton, D. Vallano, A. F. Talhelm, C. P. Weaver, L. E. Band, J. S. Baron,
296 E. A. Davidson, C. L. Tague, E. Felker-Quinn, J. A. Lynch, J. D. Herrick, L. Liu, C. L. Goodale, K. J. Novak,
297 R. A. Haeuber, Key ecological responses to nitrogen are altered by climate change. *Nat. Clim. Chang.* **6**, 836–
298 843 (2016).

299 14. I. R. Staude, D. M. Waller, M. Bernhardt-Römermann, A. D. Bjorkman, J. Brunet, P. De Frenne, R. Hédl, U.
300 Jandt, J. Lenoir, F. Máliš, K. Verheyen, M. Wulf, H. M., Pereira, P. Vangansbeke, A. Ortmann-Ajkai, R.
301 Pielech, I. Berki, M. Chudomelová, G. Decocq, T. Dirnböck, T. Durak, T. Heinken, B. Jaroszewicz, M.
302 Kopecký, M. Macek, M. Malicki, T. Naaf, T. A. Nagel, P. Petřík, K. Reczyńska, F. H. Schei, W. Schmidt, T.
303 Standovár, K. Świerkosz, B. Teleki, H. Van Calster, O. Vild, L. Baeten, Replacements of small- by large-
304 ranged species scale up to diversity loss in Europe's temperate forest biome. *Nat. Ecol. Evol.* **4**, 802–808
305 (2020).

306 15. C. Senf, R. Seidl, Mapping the forest disturbance regimes of Europe. *Nat. Sustain.* **4**, 63–70 (2021).

307 16. P. Sanczuk, K. De Pauw, E. De Lombaerde, M. Luoto, C. Meeussen, S. Govaert, T. Vanneste, L. Depauw, J.
 308 Brunet, S. A. O. Cousins, C. Gasperini, P. Hedwall, G. Iacopetti, J. Lenoir, J. Plue, F. Selvi, F. Spicher, J.
 309 Uria-diez, K. Verheyen, P. Vangansbeke, P. De Frenne, Microclimate and forest density drive plant population
 310 dynamics under climate change. *Nat. Clim. Chang.* **13**, 840–847 (2023).

311 17. S. M. Crimmins, S. Z. Dobrowski, J. A. Greenberg, J. T. Abatzoglou, A. R. Mynsberge, Changes in Climatic
 312 Water Balance Drive Downhill Shifts in Plant Species' Optimum Elevations. *Science (80-)* **331**, 324–327
 313 (2011).

314 18. D. Jacobsen, The dilemma of altitudinal shifts: caught between high temperature and low oxygen. *Front. Ecol.
 315 Environ.* **18**, 211–218 (2020).

316 19. J. Lenoir, J. Ge, A. Guisan, P. Vittoz, T. Wohlgemuth, N. E. Zimmermann, S. Dullinger, H. Pauli, W. Willner,
 317 J. Svenning, Going against the flow: potential mechanisms for unexpected downslope range shifts in a
 318 warming climate. *Ecography (Cop.)* **33**, 295–303 (2010).

319 20. D. M. Olson, E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A.
 320 D. Amico, I. Itoua, H. E. Strand, J. C. Morrison, J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F.
 321 Lamoreux, W. Wesley, P. Hedao, K. R. Kassem, Terrestrial Ecoregions of the World: A New Map of Life on
 322 Earth. *Bioscience* **51**, 933–938 (2001).

323 21. J. Vanderwal, H. T. Murphy, A. S. Kutt, G. C. Perkins, B. L. Bateman, J. J. Perry, A. E. Reside, Focus on
 324 poleward shifts in species' distribution underestimates the fingerprint of climate change. *Nat. Clim. Chang.* **2**,
 325 1–5 (2012).

326 22. M. C. Fitzpatrick, R. R. Dunn, Contemporary climatic analogs for 540 North American urban areas in the late
 327 21st century. *Nat. Commun.* **614**, 1–7 (2019).

328 23. J. W. Williams, S. T. Jackson, J. E. Kutzbach, Projected distributions of novel and disappearing climates by
 329 2100 AD. *PNAS* **104**, 5738–5742 (2007).

330 24. S. R. Loarie, P. B. Duffy, H. Hamilton, G. P. Asner, C. B. Field, D. D. Ackerly, The velocity of climate
 331 change. *Nature* **462**, 1052–1055 (2009).

332 25. P. De Frenne, B. J. Graae, F. Rodríguez-Sánchez, A. Kolb, O. Chabrierie, G. Decocq, H. De Kort, A. De
 333 Schrijver, M. Diekmann, O. Eriksson, R. Gruwez, M. Hermy, J. Lenoir, J. Plue, D. A. Coomes, K. Verheyen,
 334 Latitudinal gradients as natural laboratories to infer species' responses to temperature. *J. Ecol.* **101**, 784–795
 335 (2013).

336 26. J. Segar, H. M. Pereira, L. Baeten, M. Bernhardt-römermann, P. De Frenne, N. Fernández, F. S. Gilliam, J.
 337 Lenoir, A. Ortmann-ajkai, K. Verheyen, D. Waller, B. Teleki, J. Brunet, M. Chudomelová, G. Decocq, T.
 338 Dirnböck, R. Hédl, T. Heinken, B. Jaroszewicz, M. Kopecký, Martin Macek, F. Máliš, T. Naaf, A. Orczewska,
 339 K. Reczynska, W. Schmidt, J. Šebesta, A. Stachurska-Swakoń, T. Standová, K. Swierkosz, O. Vild, M. Wulf,
 340 I. R. Staude, Divergent roles of herbivory in eutrophying forests. *Nat. Commun.* **13**, 1–10 (2022).

341 27. K. Verheyen, L. Baeten, P. De Frenne, M. Bernhardt-ro, J. Cornelis, G. Decocq, H. Dierschke, O. Eriksson,
 342 T. Heinken, M. Hermy, P. Hommel, K. Kirby, G. Walther, M. Wulf, G. Verstraeten, Driving factors behind
 343 the eutrophication signal in understorey plant communities of deciduous temperate forests. *J. Ecol.* **100**, 352–
 344 365 (2012).

345 28. P.-O. Hedwall, J. U.- Diez, J. Brunet, L. Gustafsson, A.-L. Axelsson, J. Strengbom, Interactions between local
 346 and global drivers determine long- term trends in boreal forest understorey vegetation. *Glob. Ecol. Biogeogr.*
 347 **30**, 1765–1780 (2021).

348 29. N. Duarte, L. H. Pardo, M. J. Robin-Abbott, Susceptibility of Forests in the Northeastern USA to Nitrogen
 349 and Sulfur Deposition: Critical Load Exceedance and Forest Health. *Water, Air Soil Pollut.*, 1–21 (2013).

350 30. E. Tipping, J. A. C. Davies, P. A. Henrys, S. G. Jarvis, S. M. Smart, Long-term effects of atmospheric
 351 deposition on British plant species. *Environ. Pollut.* **281**, 117017 (2021).

352 31. G. Riofrio-Dillon, R. Bertrand, J.-C. Gégout, Toward a recovery time: forest herbs insight related to
353 anthropogenic acidification. *Glob. Chang. Biol.* **18**, 3383–3394 (2012).

354 32. J. Dengler, F. Jansen, O. Chusova, E. Hüllbusch, M. P. Nobis, K. Van Meerbeek, I. Axmanová, H. H. Bruun,
355 M. Chytrý, R. Guarino, G. Karrer, K. Moeys, T. Raus, M. J. Steinbauer, Y. Didukh, M. Diekmann, T. Englisch,
356 E. Fernández-pascual, P. Julve, G. Nakhutsrishvili, W. A. Ozinga, E. Ruprecht, U. Šilc, J.-P. Theurillat, F.
357 Gillet, Ecological Indicator Values for Europe (EIVE) 1.0. *Veg. Classif. Surv.* **4**, 7–29 (2023).

358 33. S. Kambach, J. Lenoir, G. Decocq, E. Welk, G. Seidler, S. Dullinger, J. Gégout, A. Guisan, H. Pauli, J.
359 Svenning, P. Vittoz, T. Wohlgemuth, N. E. Zimmermann, H. Bruelheide, Of niches and distributions: range
360 size increases with niche breadth both globally and regionally but regional estimates poorly relate to global
361 estimates. *Ecography (Cop.)* **42**, 467–477 (2019).

362 34. P. Grennfelt, A. Englerdyd, M. Forsius, Ø. Hov, H. Rodhe, E. Cowling, Acid rain and air pollution: 50 years
363 of progress in environmental science and policy. *Ambio* **49**, 849–864 (2020).

364 35. P. De Frenne, Novel light regimes in European forests. *Nat. Ecol. Evol.* **8**, 196–202 (2024).

365 36. J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, K. C. Hegewisch, TerraClimate, a high-resolution global
366 dataset of monthly climate and climatic water balance from 1958 – 2015. *Sci. Data* **5**, 1–12 (2018).

367 37. EMEP, *EMEP Status Report 1/2023 “Transboundary Particulate Matter, Photo-Oxidants, Acidifying and
368 Eutrophying Components”* (2023).

369 38. European Environment Agency. <https://www.eea.europa.eu/en/datahub/datahubitem-view/>.

370 39. P. Sanczuk, K. Verheyen, J. Lenoir, F. Zellweger, J. Lembrechts, R.-S. Francisco, L. Baeten, M. Bernhardt-
371 Römermann, K. De Pauw, P. Vangansbeke, M. Perring, I. Berki, A. Bjorkmann, J. Brunet, M. Chudomelová,
372 E. De Lombaerde, G. Decocq, T. Dirnböck, T. Durak, C. Greiser, R. Hédl, T. Heinken, U. Jandt, B.
373 Jaroszewicz, M. Kopecky, D. Landuyt, M. Macek, F. Máliš, T. Naaf, T. Nagel, P. Petřík, K. Reczynska, W.
374 Schmidt, T. Standovar, I. Staude, K. Swierkosz, B. Teleki, T. Vanneste, O. Vild, D. Waller, P. De Frenne,
375 Data and Code associated with original research article: Nitrogen deposition mediates westward range shifts
376 in European forest plants [Dataset]. *Dryad*, doi: doi.org/10.5061/dryad.4b8gthmt (2024).

377 40. P. De Frenne, F. Rodriguez-Sánchez, D. A. Coomes, L. Baeten, G. Verstraeten, M. Vellend, M. Bernhardt-
378 Römermann, C. D. Brown, J. Brunet, J. Cornelis, G. M. Decocq, H. Dierschke, O. Eriksson, F. S. Gilliam, R.
379 Hedl, T. Heinken, M. Hermy, P. Hommel, M. A. Jenkins, D. L. Kelly, K. J. Kirby, F. J. G. Mitchell, T. Naaf,
380 M. Newman, G. Peterken, P. Petrik, J. Schultz, G. Sonnier, H. Van Calster, D. M. Waller, G.-R. Walther, P.
381 S. White, K. D. Woods, M. Wulf, B. J. Graae, K. Verheyen, Microclimate moderates plant responses to
382 macroclimate warming. *PNAS* **110**, 18561–18565 (2013).

383 41. F. Zellweger, P. De Frenne, J. Lenoir, P. Vangansbeke, K. Verheyen, L. Baeten, R. Hédl, I. Berki, J. Brunet,
384 H. Van Calster, M. Chudomelová, G. Decocq, T. Dirnböck, T. Durak, T. Heinken, B. Jaroszewicz, M.
385 Kepecky, F. Máliš, M. Macek, M. Malicki, T. Naaf, T. A. Nagel, A. Ortmann-ajkai, P. Petrik, R. Pielech, K.
386 Reczyn, W. Schmidt, R. Pielech, K. Reczynska, O. Vild, M. Wulf, D. Coomes, Forest microclimate dynamics
387 drive plant responses to warming. *Science (80-.).* **368**, 772–775 (2020).

388 42. S. A. Chamberlain, E. Szöcs, taxize: taxonomic search and retrieval in R. *F1000Research* **2**, 1–26 (2013).

389 43. J. Lenoir, J. Svenning, Climate-related range shifts – a global multidimensional synthesis and new research
390 directions. *Ecography (Cop.)* **38**, 15–28 (2015).

391 44. D. D. Breshears, T. E. Huxman, H. D. Adams, C. B. Zou, J. E. Davison, Vegetation synchronously leans
392 upslope as climate warms. *PNAS* **105**, 11591–11592 (2008).

393 45. Edzer Pebesma, Simple Features for R: Standardized Support for Spatial Vector Data. *R J.* **10**, 439–446
394 (2018).

395 46. R. J. Hijmans, geosphere: Spherical trigonometry. Retrieved from <https://cran.r-project.org/package=geosphere>. (2017).

397 47. R. J. Hijmans, J. Van Etten, raster: Geographic analysis and modeling with raster data. R package version 2.0-
 398 12. doi: <http://cran.r-project.org/package=raster> (2012).

399 48. Microsoft, S. Weston, foreach: Provides Foreach Looping Construct. R package version 1.5.1. (2020).
 400 <https://cran.r-project.org/package=foreach>.

401 49. Microsoft, S. Weston, doParallel: Foreach Parallel Adaptor for the “parallel” Package. R package version
 402 1.0.16. (2020). <https://cran.r-project.org/package=doParallel>.

403 50. M. Tennekes, J. Nowosad, J. Gombin, S. Jeworutzki, K. Russell, R. Zijdeman, J. Clouse, R. Lovelace, J.
 404 Muenchow, tmap: Thematic Maps. *J. Stat. Softw.* **84**, 1–39 (2018).

405 51. C. Duprè, C. Stevens, T. Ranke, A. Bleekers, C. Peppler-Lisbach, D. Gowing, N. Dise, E. Dorland, R.
 406 Bobbink, M. Diekmann, Changes in species richness and composition in European acidic grasslands over the
 407 past 70 years: the contribution of cumulative atmospheric nitrogen deposition. *Glob. Chang. Biol.* **16**, 344–
 408 357 (2010).

409 52. D. Nieto-lugilde, J. Lenoir, S. Abdulhak, D. Aeschimann, S. Dullinger, J. Gégout, A. Guisan, H. Pauli, J.
 410 Renaud, J. Theurillat, W. Thuiller, J. Van Es, P. Vittoz, W. Willner, T. Wohlgemuth, N. E. Zimmermann, J.
 411 Svenning, Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species
 412 distributions across the Alps. *Ecography (Cop.)*, **38**, 578–589 (2015).

413 53. D. Bates, M. Mächler, B. M. Bolker, S. C. Walker, Fitting Linear Mixed-Effects Models Using lme4. *J. Stat.
 414 Softw.* **67**, 1–29 (2015).

415 54. C. F. Dormann, J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carr, J. R. Garc, B. Gruber, B. Lafourcade, P.
 416 J. Leit, M. Tamara, C. McClean, P. E. Osborne, B. S. Der, A. K. Skidmore, D. Zurell, S. Lautenbach,
 417 Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.
 418 *Ecography (Cop.)*, **27**, 27–46 (2013).

419 55. K. Barton, MuMIn: Multi-Model Inference. (2017).

420 56. S. Nakagawa, H. Schielzeth, A general and simple method for obtaining R2 from generalized linear mixed-
 421 effects models. *Methods Ecol. Evol.* **4**, 133–142 (2013).

422 57. R Core Team, *A Language and Environment for Statistical Computing. R Foundation for Statistical
 423 Computing* (Vienna, Austria, 2021).

424 58. B. Wen, H. Blondeel, L. Baeten, M. P. Perring, L. Depauw, S. L. Maes, L. De Keersmaeker, H. Van Calster,
 425 M. Wulf, T. Naaf, K. Kirby, M. Bernhardt-Römermann, T. Dirnböck, F. Máliš, M. Kopecký, O. Vild, M.
 426 Macek, R. Hédl, M. Chudomelová, J. Lenoir, J. Brunet, T. A. Nagel, K. Verheyen, D. Landuyt, Predicting
 427 trajectories of temperate forest understorey vegetation responses to global change. *For. Ecol. Manage.* **566**
 428 (2024).

429 59. B. Ulrich, “An ecosystem approach to soil acidification” in *Ulrich B., Sumner M.E. (Eds). Soil Acidity*.
 430 (Springer US, New York, 1991), pp. 28–79.

431

432 **Acknowledgements**

433 This paper is an outcome of the sREplot working group supported by sDiv, the Synthesis Centre of the
434 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (DFG FZT 118). **Funding:**
435 PS, PDF, and PV received funding from the European Research Council (ERC) under the European Union's
436 Horizon 2020 research and innovation programme (ERC Starting Grant FORMICA 757833) and Ghent
437 University grant BOF23/GOA/019. FZ received funding from the Swiss National Science Foundation
438 (project 193645). JJL received funding from the Flemish Research Organization (FWO, OZ7828, OZ7916
439 and OZ7792). KDP received funding from the Flemish Research Organization (FWO, ASP035-19 De
440 Pauw). IB was supported via grant EFOP-3.6.1.-16-2016-00018. MC was supported by the postdoctoral
441 fellowship L200052302 of the Czech Academy of Sciences, grant 21-11487S by the Czech Science
442 Foundation. MK, RH, MC, OV and MM were supported by the Czech Academy of Sciences (RVO
443 67985939). TD received funding from the eLTER PLUS project of the European Union Horizon 2020
444 (INFRAIA-01-2018-2019). CG received funding from FORMAS [project 2021-01993]. RH was supported
445 by the Czech Science Foundation project 21-11487S. FM was supported by the project APVV-19-0319. PP
446 was supported by the long-term development project of the Czech Academy of Sciences (RVO 67985939).
447 FRS was supported by VI PPIT – US. **Author contributions:** PS and PDF conceived the ideas and
448 designed the methodology, and with contributions of JL, JLL and FR; all authors collected data; PS
449 analysed data in collaboration with PDF; PS led the writing of the manuscript in collaboration with PDF,
450 and with significant contributions of KV, JL, FZ, JLL, FR, LB, MBR, KDP, PV and MPP. All authors
451 contributed critically to the draft and gave final approval for publication. **Competing interests:** None of
452 the authors have a conflict of interest. **Data and materials availability:** Raw macroclimate data can be
453 accessed via the TerraClimate database (36). Historical nitrogen and sulphur deposition data can be
454 accessed via the EMEP/CEIP 2023 Present state of emission data-base (37). Shapefile of biogeographical
455 regions are provided by the European Environment Agency (38). Species' ecological indicator values of
456 nitrogen niche width are provided by Dengler et al. (2023) (32). Raw data on species centroid shifts,
457 environmental change data, and R scripts to reproduce the methods, analyses and source code of all figures
458 are available [on Dryad \(39\)](#).

459

460 **Supplementary Materials**

461 Methods

462 Figs. S1 to S16

463 Data S1

464

465 **Figure Legends**

466 **Figure 1 | Spatial and environmental gradients of the study.** (A) Map of modelled nitrogen (N)
 467 deposition rate (sum of oxidized and reduced wet and dry deposition expressed in $\text{kg N ha}^{-1} \text{ year}^{-1}$; dry
 468 deposition accounted for deciduous forest surface) at 0.1° resolution for the reference year 2000, and
 469 distribution of the 2,954 resurveyed vegetation plots (grey crosses, spatially jittered for clarity) across the
 470 European temperate forest biome (shaded green background) (20). (B) Observed environmental variation
 471 across the 2,954 vegetation plots (grey dots) of three key drivers of forest biodiversity over the course of
 472 the study period investigated here: nitrogen deposition rate (total of oxidized and reduced wet and dry N),
 473 climate-change velocity (realized changes of both temperature and precipitation, expressed in km north
 474 year^{-1}) and the rate of canopy cover change (average annual rate; expressed in % canopy cover increase
 475 year^{-1}). In all boxplots, we present the median (horizontal line), 1st and 3rd quantile (lower and upper hinges),
 476 and 1.5 times the inter-quartile-range (whiskers). Half violin plots represent the density distributions of the
 477 environmental change values. The grey dashed lines represent no changes (not shown for nitrogen
 478 deposition rates). Negative values in the case of climate and canopy cover change indicate southward
 479 velocities and canopy opening, respectively.

480 **Figure 2 | Rate and geographic direction of species centroid shifts and climate analogue shifts.** (A)
 481 Rate and geographic direction of species range centroid shifts (n species = 266). (B) Velocity and
 482 geographic direction of climate analogue shifts (n plots = 2,954). In all graphs, the Rayleigh's r statistic
 483 represents a test of uniformity that compares the bearings of shifts to a uniform circular distribution (null
 484 hypothesis). Larger values indicate more directional shifts. Asterisk (*) indicates significant deviations
 485 from the null hypothesis ($p < 0.05$). See Figs. S3, S4 for results of the analyses including rare species and
 486 per biogeographic region.

487 **Figure 3 | Effects of environmental changes on centroid shifts based on the most parsimonious model.**
 488 (A) Results of the mixed-effects models (n species = 266) indicating coefficient estimates and 95%
 489 confidence intervals (CI) of the effects of the velocity of climate change (km year^{-1} , $\text{km north year}^{-1}$, km
 490 east year^{-1}), **average** nitrogen deposition rate **between the baseline survey and resurvey** ($\text{kg N ha}^{-1} \text{ year}^{-1}$),
 491 and rate of canopy change ($\% \text{ cover increase year}^{-1}$), as well as all pairwise interactions (indicated by '×')
 492 on the absolute rate of centroid shifts (km year^{-1}) and the south-north rate ($\text{km north year}^{-1}$; **negative values**
 493 **indicate southward shifts**) and west-east rate (km east year^{-1} ; **negative values indicate westward shifts**)
 494 extracted from the most parsimonious model structure (empty rows were not included in the final selected
 495 model). All the predictor variables were z -transformed to increase comparability. Rates of canopy opening
 496 (negative values of canopy change) are associated with greater absolute rates of centroid shifts. The west-
 497 east rate was exclusively linked to nitrogen deposition, with faster westward shifts in species with lower
 498 rates of nitrogen deposition across their distributions. Model fit is presented as the proportion of variation
 499 explained by the fixed effect (marginal R^2 , R^2_m) and the proportion of variation explained by the fixed and
 500 random effects (conditional R^2 , R^2_c). Models accounted for plant growth form as random intercept (five
 501 levels: forbs, graminoids, pteridophytes, shrubs and trees). (B) Results of the variation partitioning analyses
 502 representing the individual contribution of each environmental predictor. Bar plots are proportional to the
 503 variation explained by the unique contribution of each fixed effect (expressed as R^2_m). In all graphs,
 504 estimates and error bars represent the median value and 2.5 – 97.5 percentiles across 1,000 bootstrap
 505 samples. See **Fig. S7** for results on the analyses that also included rare species and **Fig. S8** for a direct
 506 **comparison with the estimated effects of acidifying deposition.**

507 **Figure 4 | Distance and geographic direction of colonization and extinction centroids.** (A) Distance
 508 and geographic direction of colonization centroids (n species = 202). (B) Distance and geographic direction
 509 of extinction centroids (n = 246). Longer distances reflect that colonization or local extinction are happening
 510 in one preferred direction relative to the baseline centroid. Rayleigh's r statistic represents a test of
 511 uniformity that compares the bearings of shifts to a uniform circular distribution (null hypothesis). Larger

512 values indicate more directed shifts. Asterisk (*) indicates significant deviations from the null hypothesis
513 ($p < 0.05$). Results of the analyses that also included rare species are presented in **Fig. S9**. Results for each
514 biogeographic region are presented in **Fig. S10**.

515 **Figure 5 | Effects of nitrogen deposition rates and species nitrogen niche width on colonization**
516 **centroids in the most parsimonious models.** Results of the mixed-effects model testing for the interaction
517 effect between the average nitrogen deposition rate **between the baseline survey and resurvey** across each
518 species' distribution ($\text{kg N ha}^{-1} \text{ year}^{-1}$) and species' ecological indicator values for nitrogen niche width (an
519 index integrating the intra- and inter-regional variability in the nitrogen niche, with higher values indicating
520 more generalist species and smaller values specialist species) on the south-north and west-east colonization
521 centroids. Negative distances indicate southward (A) or westward colonization (B). Interaction effects
522 between species nitrogen niche width and the average nitrogen deposition rate **between the baseline survey**
523 **and resurvey** across each species' distribution are plotted along the color gradient. Model predictions were
524 plotted to a maximum of $35 \text{ kg N ha}^{-1} \text{ year}^{-1}$ to avoid extrapolation uncertainty for deposition values where
525 observations were scarce. Modelling results without outlier data ($n = 3$ data points) are provided in **Fig.**
526 **S13**. The most parsimonious model of south-north colonization was an intercept-only model (blue solid
527 line). Westward colonization depended on species nitrogen niche width. Nitrogen generalists that initially
528 occurred in areas with lower rates of nitrogen deposition moved more westward. Colonization in the more
529 specialist species was generally suppressed, irrespective of the nitrogen deposition rate. In all plots, the red
530 dashed line represents the zero-line.

Supplementary Materials for

Unexpected westward range shifts in European forest plants links to nitrogen deposition

537 Pieter Sanczuk^{1*}, Kris Verheyen¹, Jonathan Lenoir², Florian Zellweger³, Jonas J. Lembrechts⁴, Francisco
 538 Rodriguez-Sanchez⁵, Lander Baeten¹, Markus Bernhardt-Römermann^{6,7}, Karen De Pauw¹, Pieter
 539 Vangansbeke¹, Michael P. Perring^{8,9}, Imre Berki¹⁰, Anne Bjorkman^{11,12}, Jörg Brunet¹³, Markéta
 540 Chudomelová¹⁴, Emiel De Lombaerde¹, Guillaume Decocq², Thomas Dirnböck¹⁵, Tomasz Durak¹⁶,
 541 Caroline Greiser^{17,18}, Radim Hédl^{14,19}, Thilo Heinken²⁰, Ute Jandt^{21,22}, Bogdan Jaroszewicz²³, Martin
 542 Kopecký^{24,25}, Dries Landuyt¹, Martin Macek²⁴, František Máliš^{26,27}, Tobias Naaf²⁸, Thomas A. Nagel²⁹,
 543 Petr Petřík^{30,31}, Kamila Reczyńska³², Wolfgang Schmidt³³, Tibor Standová³⁴, Ingmar Staude^{22,35},
 544 Krzysztof Świerkosz³⁶, Balázs Teleki³⁷, Thomas Vanneste¹, Ondrej Vild¹⁴, Donald Waller³⁸, Pieter De
 545 Frenne¹

546 *corresponding author : Pieter Sanczuk ; Pieter.Sanczuk@UGent.be

547

548 The PDF file includes:

549 Methods

550 Figs. S1 to S16

551 Data S1

553 **Methods**

554 1. Study area and vegetation data

555 We compiled a database including 2,954 permanent and semi-permanent vegetation plots distributed in
556 mature forest stands across five biogeographic regions (Atlantic [n plots = 322], Alpine [266], Boreal [21],
557 Continental [2049] and Pannonic [296]) (Fig. 1; www.forestREplot.ugent.be) (40, 41). Community
558 composition data were derived from baseline surveys recorded between 1933 and 1994 and paired resurveys
559 carried out after the baseline surveys between 1987 and 2017 (median [min – max] inter-survey interval:
560 39 [13 – 67] years). All plots were located in ancient (such that they have not been cleared for any other
561 land use since at least the 18th century) mature forest stands and excluded heavily managed plantations.
562 Vegetation plots did not experience major disturbances between the baseline surveys and the resurveys
563 (e.g., no replanting or clearcutting). All plots were permanently marked (i.e., physical mark permanently
564 visible in the field) or quasi-permanent. Plot sizes for botanical surveys ranged between 25 and 1300 m².
565 The presence and abundance (as the percentage ground cover, visually estimated) of all vascular plant
566 species in the understorey (defined as all plants < 1.3 meter tall; thus including seedlings of tree and shrub
567 species), was recorded in all plots. Plant taxonomy was standardized with the R package *taxize* (42).

568

569 2. Centroid shifts

570 2.1. Rate (speed and direction) of range centroid shifts

571 Species centroid shifts are brought about by the combined effects of local colonization (a new arrival in the
572 community of a given plot), changes in abundance, and local extinction, and these processes occur across
573 the entire distribution of species (14, 43, 44). We quantified the rate of range shifts based on the actual
574 change, over time, in the geographical coordinates of the range centroids, i.e., the abundance-weighted
575 geometric center of a species' distribution across the vegetation plot network. In contrast to the more
576 frequent quantification of range shifts from either the trailing or leading edges, analyzing centroid shifts
577 allows us to obtain more robust estimates of the magnitude and geographic direction of complex
578 distributional shifts (6, 11, 12, 21). This is important, since range shift estimates based on either leading or
579 trailing edges can be affected by stochastic processes and low sample sizes that may blur the overall
580 biogeographical trends (11).

581 Species' centroid shifts were quantified across all vegetation plots across the study area. To avoid bias
582 attributed to rare species observed in only a few of the plots, we quantified range centroid shifts for all

583 species that occurred in more than 1% of the plots. Across the entire plot network, this resulted in a final
584 set of 266 species. However, as a sensitivity analysis, range centroid shifts (and all downstream analyses)
585 were also quantified for all species that occurred in more than 0.1% of the plots (N species = 596, for the
586 entire plot network) (results in **Figs. S3, S7**). Centroid shifts for each separately biogeographic region
587 (defined by the European Environment Agency; www.eea.europa.eu) were also quantified by running the
588 analyses on the subset of vegetation plots within each region (results in **Figs. S4, S9**). It is important to note
589 here that the overall trends in centroid shifts across the entire study area are not directly comparable to the
590 analyses for each biogeographic region separately, since likely disjunct shifts in different regions are
591 averaged in the overall trends across the entire plot network.

592 We quantified the geographic displacement of centroids over time (schematically presented in **Fig. S1**) by
593 means of the geographic distance and bearing (a circular variable expressed in decimal degrees ranging
594 from 0° to 360°) between species' centroid positions at the time of the baseline survey (t_1) and at the time
595 of the resurvey (t_2) (12, 21). First, for each species, the mean latitude and longitude was calculated at t_1 and
596 t_2 weighted by the percentage cover (abundance-weighted) to locate the range centroids at the time of both
597 surveys. Next, the geographic distance (minimal geodesic distance) between the centroids at t_1 and t_2 was
598 quantified with the R package *sf* (45) . The bearing was quantified as the geographical direction of travel
599 along a rhumb line (so-called 'loxodrome', true course) between the centroids at t_1 and t_2 using the R
600 package *geosphere* (46).

601 The distance and bearing of biotic centroid shifts were used to derive three response variables:
602 The absolute rate of centroid shifts ($km\ year^{-1}$) was calculated as the geographic distance between the
603 centroid at t_1 and t_2 (i.e. the length of the vector) divided by the average inter-survey interval in all plots
604 where species sp_i was recorded.
605 The projected south-north and west-east rate ($km\ north\ year^{-1}$ and $km\ east\ year^{-1}$) of centroid shifts was
606 calculated as the rate of centroid shift multiplied by the cosine (south-north rate) or the sine (west-east rate)
607 of the geographic direction of shift.
608 The directionality (i.e., the angular dispersion of the bearings) of centroid shifts was quantified based on a
609 Rayleigh's test of uniformity. In the Rayleigh's test, bearings of shifts are compared to a uniform circular
610 distribution (i.e., the null hypotheses reflecting random shifts) to calculate Rayleigh's r statistic. This
611 statistic represents the directionality of a set of vectors, ranging from zero (anisotropic distribution, meaning

612 random directional movements) to one (isotropic distribution; all vectors are centered to one single
613 direction).

614 2.2. Distance of colonization and extinction centroids

615 To mechanistically unravel the processes at play in driving range centroid shifts, we decomposed centroid
616 shifts of each species into shifts attributed to the effects of colonization (here, when a species is observed
617 in a plot at t_2 but not in t_1), and shifts attributed to the effects of local extinction (when a species is observed
618 in a plot at t_1 but not in t_2). For this analysis, we introduce the concept of colonization centroid- that is the
619 centroid of newly colonized plots by a species (abundance-weighted by the percentage cover at t_2) – and
620 extinction centroid – that is the abundance-weighted centroid of plots where a species became locally
621 extinct (abundance-weighted by the percentage cover at t_1) (**Fig. S1**). Species-specific colonization and
622 extinction centroids are expressed as the projected distance in each geographic direction (*km north* and *km*
623 *east*) relative to the species' original centroid at t_1 . The northward and eastward distances of the colonization
624 and extinction centroids were calculated analogous to the rate of centroid shifts, but not accounting for the
625 inter-survey interval. From a biogeographical point of view, longer distances reflect that colonization or
626 local extinction events took place farther away from the baseline centroid, suggesting that these processes
627 are happening in a preferred direction relative to the baseline centroid position (schematically explained in
628 **Fig. S1C**). The directionality of the colonization and extinction centroids was quantified based on the
629 Rayleigh's r statistic.

630 To avoid bias attributed to rare events of species colonization or local extinction in only a few of the plots,
631 we quantified both centroid types for all species that colonized or went extinct in more than 1% of the plots.
632 Across the entire plot network, this resulted in a final set of 202 species (colonization centroids) and 246
633 species (extinction centroids). However, as a sensitivity analysis, both centroids (and all downstream
634 analyses) were also quantified for all species that colonized or went locally extinct in more than 0.1% of
635 the plots (n species = 527 and 542 for colonization and local extinction, respectively) (results in **Figs. S3**,
636 **S7**).

637 2.3. Null model of random movements

638 To assess to what extent the centroid shifts are independent from noise attributed to, for instance, the spatial
639 distribution of the vegetation plots, we applied a conservative null model approach as an additional
640 sensitivity analysis. For each species, we calculated baseline and resurvey centroids from resampled (with
641 replacement) plots in the vegetation data set. The baseline centroid was calculated based on a resample of

642 all plots where the species was observed in the baseline survey, with a sample size equal to the original data
643 set in the baseline period. The resurvey centroid was calculated based on a sample of all plots where the
644 species was observed in both the resurvey and baseline survey (thus, including also newly colonized plots
645 and plots where the species went locally extinct), with a sample size equal to the original data set in the
646 resurvey period. We thus assumed that the species could have moved randomly within its distribution (here,
647 conservatively defined as all plots where the species was observed). The null model was iterated 1,000
648 times for each species that was observed in >1% of the plots. Based on this sensitivity analysis, we conclude
649 that the observed rate of centroid shifts was higher and the main directions less dispersed than would be
650 expected at random owing to, for instance, the spatial distribution of the vegetation plots (i.e., shifts towards
651 each cardinal direction were 62-70% faster than expected based on randomized shifts within each species'
652 distribution; **Fig. S5**).

653

654 3. Environmental change variables

655 The absolute and projected velocities of species' centroid shifts and colonization and extinction centroids
656 were linked to (i) the velocity of climate change (ii) nitrogen deposition rate and (iii) the rate of forest
657 canopy cover change.

658 3.1. The velocity of climate change

659 Spatially explicit climate change velocities were estimated by climate analogue mapping (4, 22), referring
660 to the spatial change of climatic conditions (integrating both temperature and precipitation) between the
661 baseline surveys and the resurveys. Climate analogue mapping is a statistical approach that maps all areas
662 that have similar climatic conditions relative to a certain location's climate. Climate analogue mapping
663 allowed us to quantify changes in the geographical distribution of climate over time, while also considering
664 the geographic variation in climatic conditions at the landscape scale due to e.g., topoclimate. In contrast
665 to the frequent calculation of climate change velocities based on thermal gradients and isotherms alone (3,
666 24), climate analogue mapping allowed us to consider consolidated shifts of multiple bioclimatic variables,
667 i.e. the maximum growing-season temperatures, mean minimum winter temperatures and total growing-
668 season precipitation and represented the climatic norms over two ten-year periods (the baseline period
669 [1958-1967] and resurvey period [2007-2016]; time interval of 49 years) (**Fig. S2**). Gridded monthly
670 climate data were retrieved from the TerraClimate database (36) and analysed at 1/24th degree native
671 resolution (approximately 4 km in the study area). We identified climate analogues for all 2,954 resurveyed

672 vegetation plots. For each plot, we performed a grid search at 4 km resolution to map all raster cells within
673 the study area (N cells = 518,205) that had similar climatic conditions in the resurvey period compared to
674 a plot's climate in the baseline period. Climate 'analogy' was assessed by testing, for each bioclimatic
675 variable separately, whether the climatic variation of any location in the resurvey period could be drawn
676 from the same distribution as the climate variation for a given plot in the baseline period using non-
677 parametric two-sample Wilcoxon rank sum tests. We considered significant differences ($p < .05$) as novel
678 climates and non-significant differences ($p \geq .05$) as analogue climates. Climate analogues were finally
679 assessed by overlaying the climate analogue areas for each bioclimatic variable separately (see example in
680 **Fig. S2**).

681 The velocity of climate change was subsequently calculated as the geographic distance (in km) between the
682 plot's coordinates and the cell coordinates of the nearest climate analogue, divided by the time interval.
683 Quantifying the velocity of climate change based on the nearest climate analogue methods is particularly
684 useful in the context of this study, as climate analogue shifts are conceptually identical to biotic centroid
685 shifts: estimates of the absolute velocity of climate change ($km \text{ year}^{-1}$), as well as the projected velocities
686 along the south-north ($km \text{ north year}^{-1}$) and west-east ($km \text{ east year}^{-1}$) axes were obtained by using the exact
687 formulas as the ones used to estimate the rate of centroid shifts. The directionality of climate analogue shifts
688 was quantified based on the Rayleigh's r statistic.

689 The calculation of climate change velocities was performed in R making use of the packages *raster* (47)
690 and *geosphere* (Hijmans 2019). Parallel computation was implemented using the R packages *foreach* (48)
691 and *doParallel* (49). Maps were produced using the R package *tmap* (50).

692 Note that we here map climate analogues based on statistical testing as an alternative to the classification
693 of climate analogue mapping based on continuous dissimilarity matrices because (1) it can provide
694 information on the contribution of each bioclimatic variable separately; and (2) it allows us to consider the
695 interannual climatic variability (ICV) in both the baseline and resurvey periods, which is biologically very
696 relevant. For example, locations with stable climatic conditions (with low ICV) are mapped as novel
697 climatic conditions even under small changes in the climate system, while areas with a highly variable
698 climates (with large ICV) are more resilient and will not experience biologically relevant changes even
699 under relatively large oscillations in the climate system.

700 3.2. Nitrogen and sulphur deposition rate

701 We quantified the nitrogen (N) and sulphur (S) deposition rates for each plot using the EMEP gridded
702 database (https://emep.int/mscw/mscw_moddata.html), providing modelled nitrogen and sulphur

703 deposition data at 0.1° native resolution (~8 km × 8 km within the study area). For each plot in the vegetation
704 network, the rate of nitrogen (oxidized and reduced) and sulphur (oxidized) deposition was quantified as
705 the total wet and dry deposition (dry deposition accounted for deciduous temperate forest surface) between
706 the baseline survey and the resurvey, divided by the inter-survey time interval (expressed in total $kg\ ha^{-1}$
707 $year^{-1}$). Values of annual nitrogen deposition before the year 1990 were obtained based on the reference
708 year 2000 and corrected for the time period using the period-specific correction factors published in (51).
709 Yearly values of nitrogen depositions from 1990 onwards were directly retrieved from the EMEP data
710 bases. Sulphur and nitrogen deposition contribute to the acidifying deposition rate. This rate (calculated as:
711 $kg\ N\ ha^{-1}\ year^{-1}/14 + (kg\ S\ ha^{-1}\ year^{-1}/32.06) \times 2$, $Keq\ ha^{-1}\ year^{-1}$) was very strongly correlated
712 (Spearman correlation: 0.87) to the nitrogen deposition rate across all 2,954 plots **due to partially shared**
713 **emission sources**.

714 3.3. Rate of forest canopy cover change

715 For each plot in the study area, forest canopy structure was quantified *in situ* as the total cover of the tree
716 canopies (>7 m) in the baseline survey and resurvey based on visual estimations. Species-specific tree cover
717 estimates were summed in each plot. The rate of forest canopy cover change was quantified by subtracting
718 the total canopy cover in the resurvey period from the total canopy cover in the baseline survey divided by
719 the inter-survey time interval (*percentage canopy cover increase year⁻¹*).

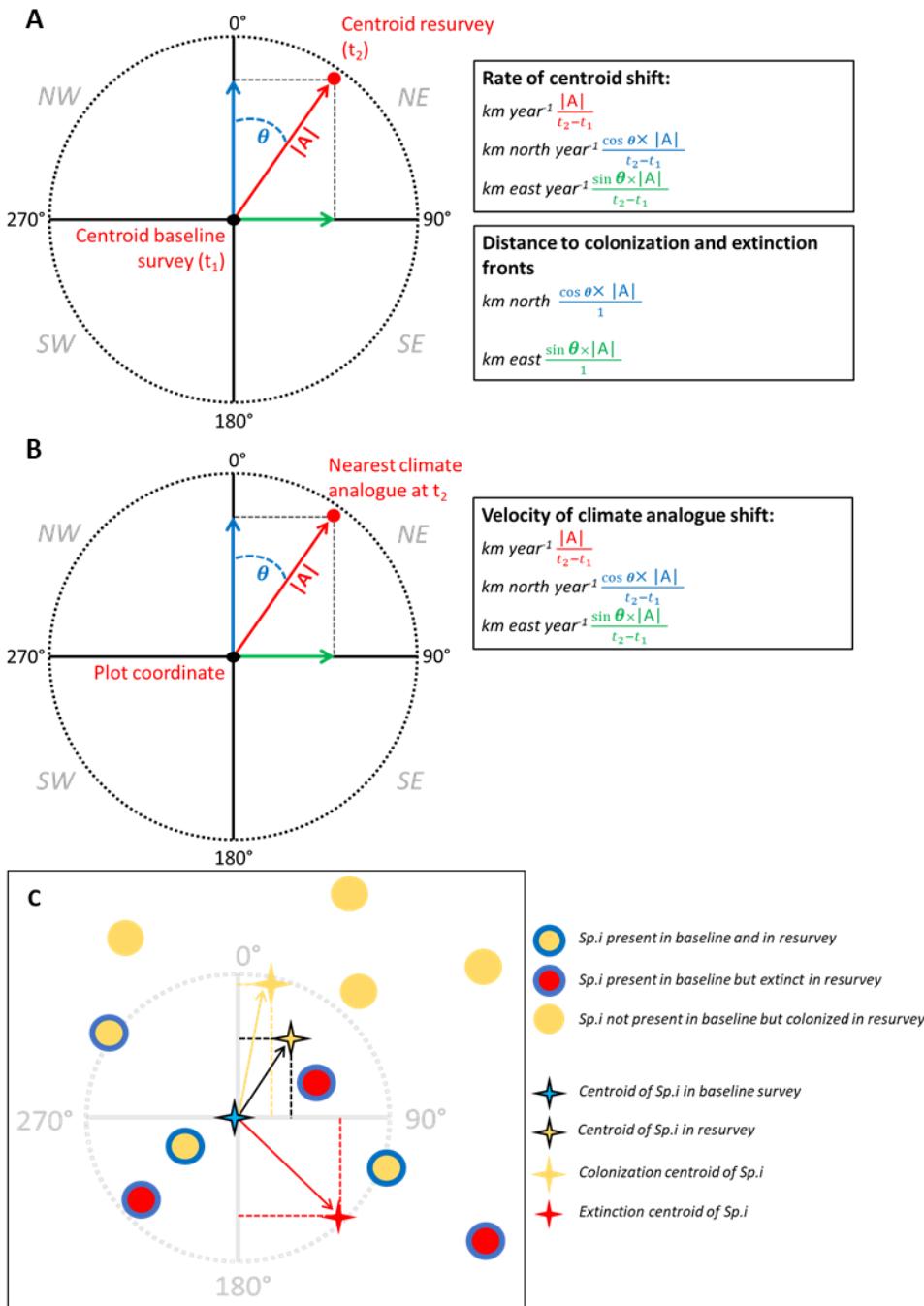
720 3.4. Nitrogen and acidity (reaction) niche width

721 Species' nitrogen and acidity (reaction) niche width values were extracted from the EIVE-database (32),
722 presenting ecological indicator values in European plant species (a numerical index between zero and ten;
723 with higher values indicating more generalist species). The niche width metrics are continuous measures
724 bounded between 0 and 10 that integrates the intra-regional and inter-regional variability in each species'
725 nitrogen and acidity niche. In contrast to classical Ellenberg indicator values, which describe niche optima
726 on ordinal scales, niche width data extracted from the EIVE-data base (32) have several important
727 advantages for this study: (i) species with a more narrow nitrogen niche tend to be more specialized (33);
728 (ii) the biogeographical implication is that species with a larger niche width often also have larger ranges
729 (33); (iii) the continuous nature of the index facilitates its use within conventional linear mixed-effects
730 modelling.

731

732 4. Statistical modeling

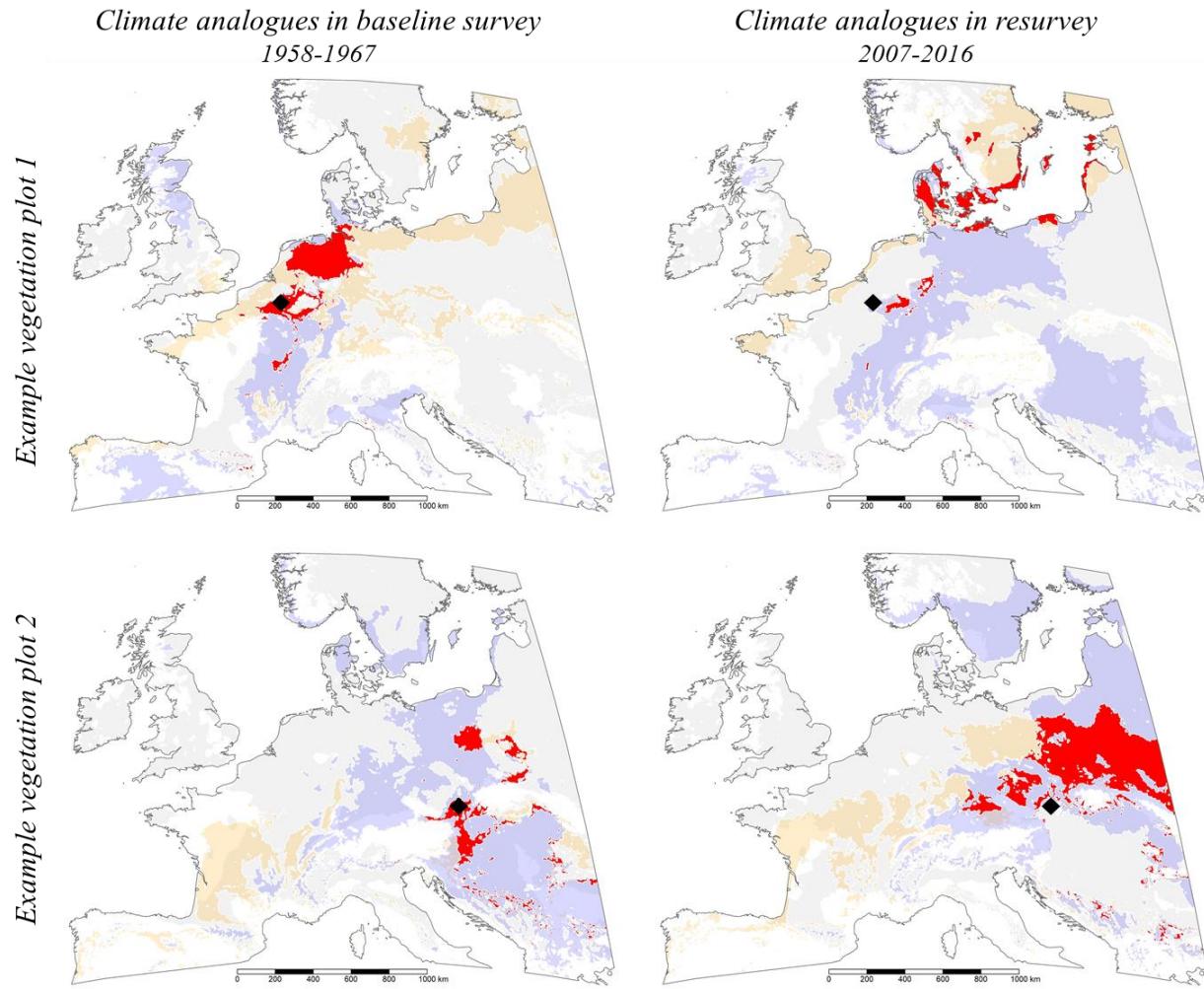
733 4.1. Linear mixed-effects models

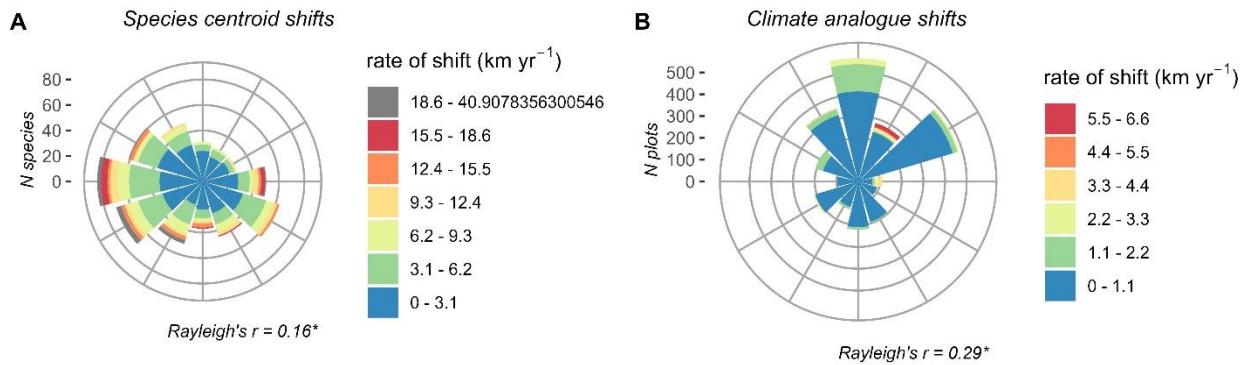

734 We ran a set of linear mixed-effects models (LMM) to relate (i) the rate of centroid shifts (absolute, south-
735 north and west-east rate) and (ii) the northward and eastward distance of colonization and extinction
736 centroids to three global environmental change drivers that are expected to potentially alter range dynamics
737 in understorey species (1, 14, 16, 52): the velocity of climate change (the absolute velocity [$km\ year^{-1}$], and
738 the projected south-north and west-east velocity [$km\ north\ year^{-1}$ and $km\ east\ year^{-1}$]), the nitrogen
739 deposition rate ($kg\ N\ ha^{-1}\ year^{-1}$ of reduced and oxidized wet and dry deposition of nitrogen) and the rate of
740 forest canopy cover change ($\%\ canopy\ cover\ increase\ year^{-1}$). The LMMs included all possible two-way
741 interactions and accounted for plant growth form (random intercept, including five levels: forbs,
742 graminoids, pteridophytes, shrubs and trees) as a random intercept and were conducted with the R package
743 *lme4* (53). Because centroid shifts are quantified in a species-specific manner while predictor variables
744 describe the environment at the plot-level, we calculated species-specific abundance-weighted mean values
745 for each predictor to match the observational unit of the model (i.e., the average environmental change
746 values across all plots where species sp_i occurred, weighted for its original abundance (12); see **Fig. S6** for
747 a data flow chart). The absolute velocity of biotic centroid shifts and the absolute velocity of climate
748 analogue shifts were square root transformed to obtain normality. Pairwise Spearman correlations (r) among
749 the environmental change predictors were acceptable (median $|r| = 0.09$; maximum $|r| = 0.46$ for nitrogen
750 deposition rate and the absolute velocity of climate change) (54). For each model, we selected the most
751 parsimonious (based on Akaike information criterion with small-sample correction [AICc]) using the R
752 package *MuMln* (55), with the restricted maximum likelihood argument to 'FALSE'. Once the best model
753 structure was selected, we set the restricted maximum likelihood argument to 'TRUE' for exact coefficient
754 estimation (53). Model coefficient estimates (mean values) and 95% confidence intervals (2.5 and 97.5
755 percentiles) were generated by iterating the single best model structure on 1,000 bootstrap samples.
756 Significance was considered when the 95% confidence interval did not include zero. Model fit was assessed
757 as the percentage of variance explained by the fixed effects (marginal R^2 ; R^2_m) and the percentage of
758 variance explained by both fixed and random effects (conditional R^2 ; R^2_c) following (56). Prior to
759 modelling, all predictor variables were z -transformed to allow a better comparison of the predictors' effect
760 sizes.

761 To test whether the colonization centroids were associated to the species nitrogen **and acidity niche width**
762 **and the rates of atmospheric (nitrogen and acidifying, respectively) deposition (and their respective pairwise**
763 **interaction effects)**, we ran a LMM with plant growth form as a random intercept term. The most
764 parsimonious model was selected as described above.

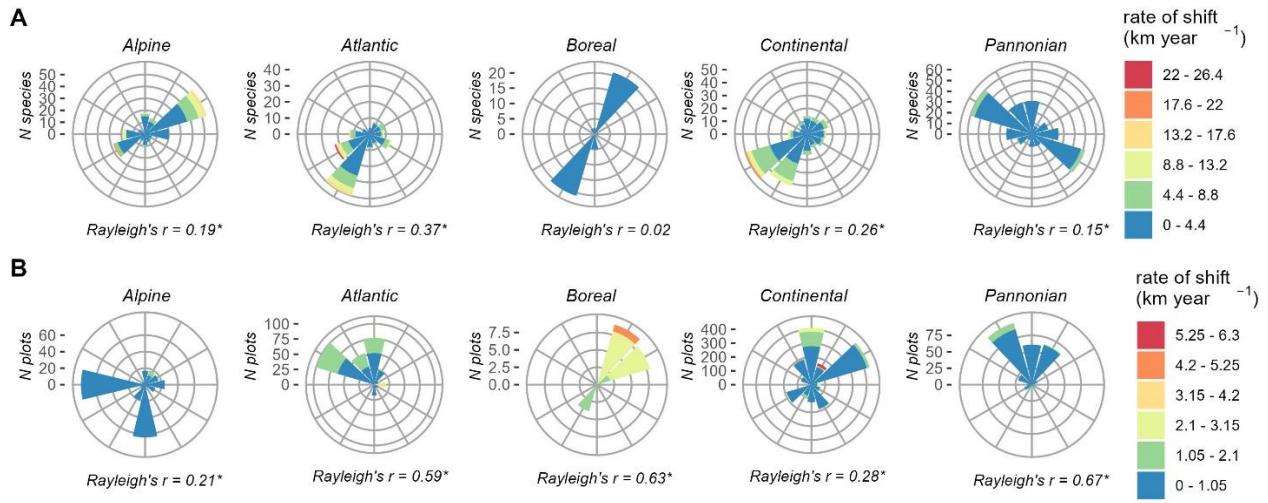
765 4.2. Variation partitioning

766 In a final step, the unique contribution of each of the three environmental change variables to the full model
767 was analysed in a variation partitioning analysis. To obtain the variation explained uniquely by each focal
768 environmental change variable, we subtracted the variation explained by the fixed effects (marginal R^2 ;
769 R^2_m) of the partial model, i.e., the full model minus one (out of the three) focal environmental change
770 predictor variables, from the variation explained by the fixed effects in the full model. The procedure was
771 repeated on 1,000 bootstrap replicates and the average proportion variation explained (average R^2_m) and
772 95% confidence intervals were calculated. All analyses were performed in R version 4.2.2 (57)

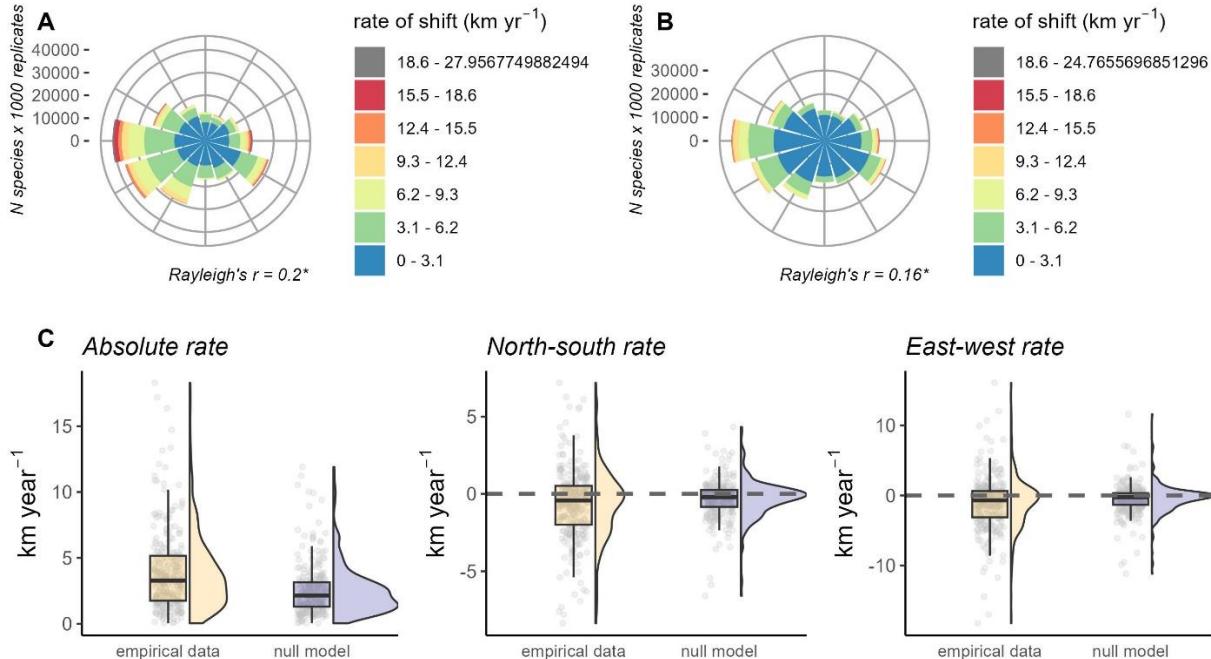

773 **Supplementary Figures**


774

775 **Figure S1 | Schematic illustration of centroid shifts and climate analogue shifts.** (A) Schematic
 776 overview and calculation of the rate of centroid shifts. (B) Schematic overview and calculation of the
 777 velocity of climate change based on climate analogue shifts. (C) Conceptual framework and definition of
 778 centroid shifts, colonization and extinction centroids for a certain species (sp.i). From a biogeographical
 779 point of view, longer distances reflect that colonization or local extinction events took place farther away


780 from the baseline centroid, suggesting that these processes are happening in a preferred direction relative
781 to the baseline centroid position.

783 **Figure S2 | Climate analogue mapping integrating three bioclimate variables.** Climate analogue
 784 mapping at $4 \text{ km} \times 4 \text{ km}$ resolution for the climatic conditions in the baseline (average climate values in
 785 the period 1958-1967) and resurvey period (average climate values in the period 2007-2016) in two
 786 vegetation plots. Climate analogues for a given plot (black square) in the baseline period (left) and shifts in
 787 climate analogues in the resurvey relative to the climatic conditions in the baseline period (right) for three
 788 bioclimate variables separately: maximum growing-season temperatures (orange), minimum winter
 789 temperatures (blue) and total growing-season precipitation (grey), and the overlayed climate analogue areas
 790 of all three bioclimatic variable together (red). The velocity of climate change was calculated as the distance
 791 to the nearest climate analogue raster cell (thus, within the red area) over time.



792
793 **Figure S3 | Rate and geographic direction of centroid shifts and climate analogue shifts.** (A) Rate and
794 geographic direction of species centroid (including rare species; n species = 596). (B) Rate and geographic
795 direction climate analogue shifts (n plots = 2,954). In all graphs, the Rayleigh's r statistic represents a test
796 of uniformity that compares the bearings of shifts to a uniform circular distribution (null hypothesis). Larger
797 values indicate more directional shifts. Asterisk (*) indicates significant deviations from the null hypothesis
798 ($p < 0.05$).

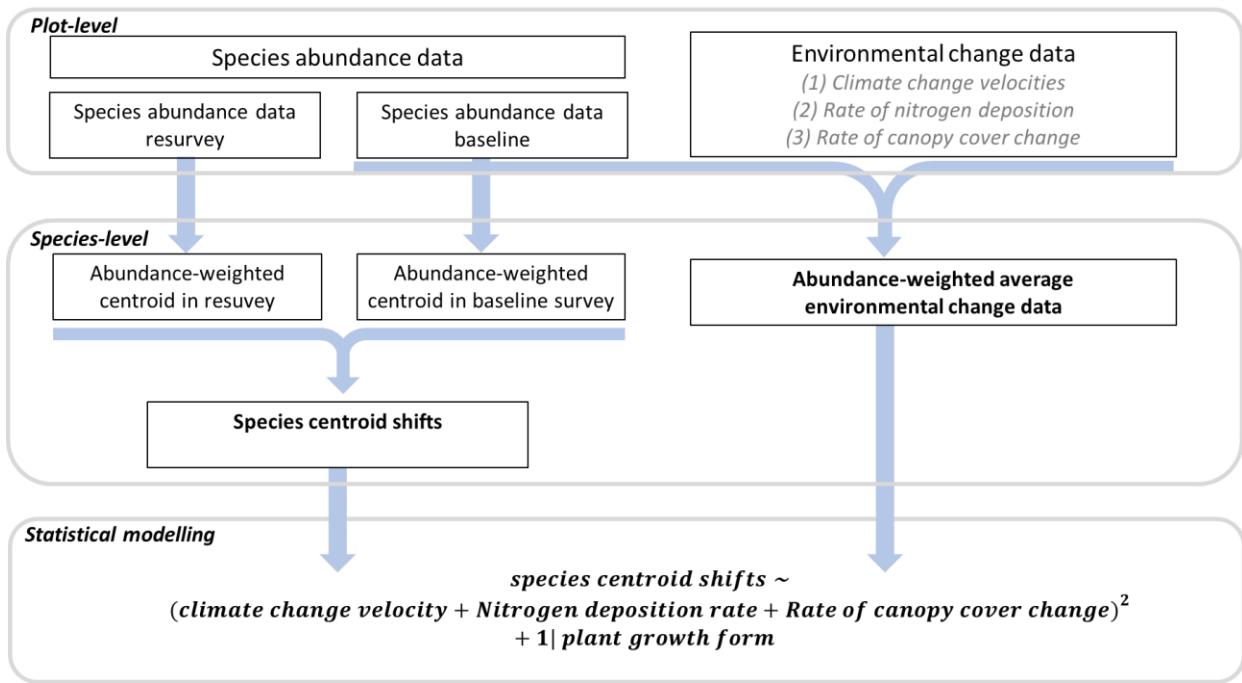

799
800
801
802
803
804
805
806
807

Figure S4 | Rate and geographic direction of centroid shifts and climate analogue shifts per biogeographic region. (A) Rate and bearing of species centroid shifts (n species Alpine = 173; Atlantic = 144; Boreal = 41; Continental = 225; Pannonic = 256). (B) Rate and bearing of climate analogue shifts (n plots Atlantic = 322; Alpine = 266; Boreal = 21; Continental = 2049; Pannonic = 296). Rayleigh's r statistic represents a test of uniformity that compares the bearings of shifts to a uniform circular distribution (null hypothesis). Larger values indicate more directed shifts. Asterisk (*) indicates significant deviations from the null hypothesis ($p < 0.05$). Biogeographical boundaries were defined by the European Environment Agency (www.eea.europa.eu).

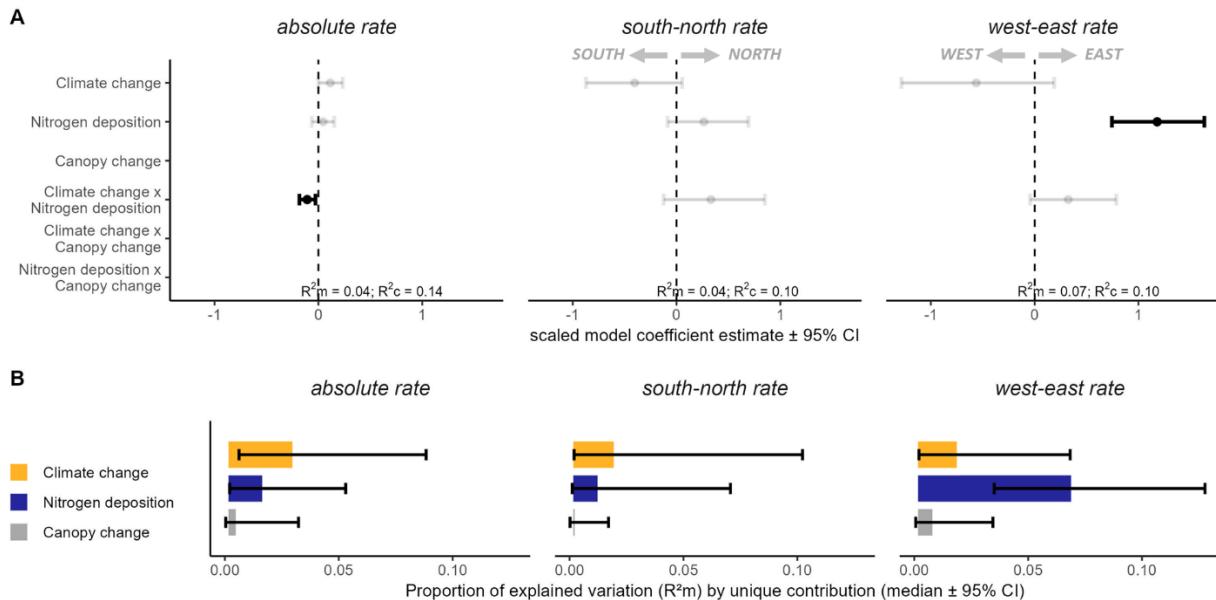

808
809
810
811
812
813
814
815
816
817
818
819
820

Figure S5 | Rate and geographical direction of centroid shifts that can be attributed to random noise due to the plot distribution. (A) Rate and geographic direction of species centroids for 1,000 bootstrapped replicates (n species = $266 \times 1,000$ replicates). (B) Rate and geographic direction of null models where species-specific abundances were randomized across all plots in which the species was observed, and resampled 1,000 times (n species = $266 \times 1,000$ replicates). In all graphs, the Rayleigh's r statistic represents a test of uniformity that compares the bearings of shifts to a uniform circular distribution (null hypothesis). Larger values indicate more directional shifts. Asterisk (*) indicates significant deviations from the null hypothesis ($p < 0.05$). (C) Comparison between species-specific bootstrapped estimates and null models of the absolute rate and the south-north and west-east rate (grey symbols; average across 1,000 replicates). The magnitudes of centroid shifts are significantly different from random noise owing to the spatial distribution of the vegetation plots by 66% (northward shifts were 66% faster than expected based on random movements), 62% (southward shifts), 63% (westward shifts) and 70% (eastward shifts).

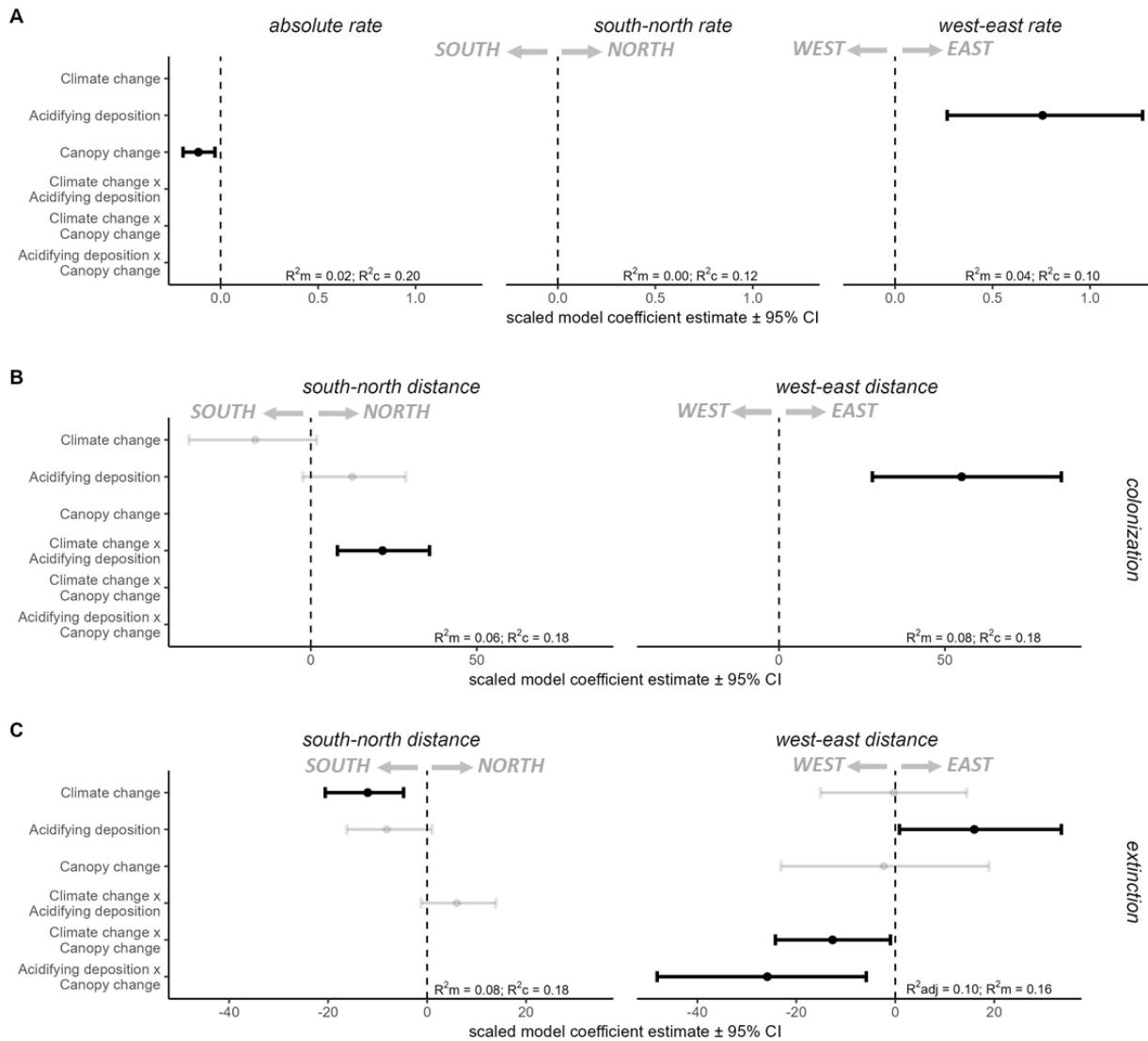

821
822
823
824
825
826
827
828
829
830
831
832

Figure S6 | Framework of the study and flow chart of the data. Species abundance data were collected at the plot-level during a baseline and resurvey period. Environmental change data were collected at the plot-level. Species-specific abundance-weighted centroids were calculated for the baseline survey and the resurvey. The rate of centroid shift was calculated as the absolute rate, the projected south-north and west-east rate, and the northward and eastward distance of colonization and extinction centroids. Species-specific environmental change data were obtained by taking the average environmental change values (realized change between the baseline and resurvey period) in all plots where the species was observed in the baseline period, weighted by its original abundance. Using linear mixed-effects models, biotic centroid shifts were linked to the abundance-weighted environmental change data and all pairwise interactions (indicated by ²). Plant growth form (with five levels: forbs, graminoids, pteridophytes, shrubs and trees) was included as a random effect term in all models.

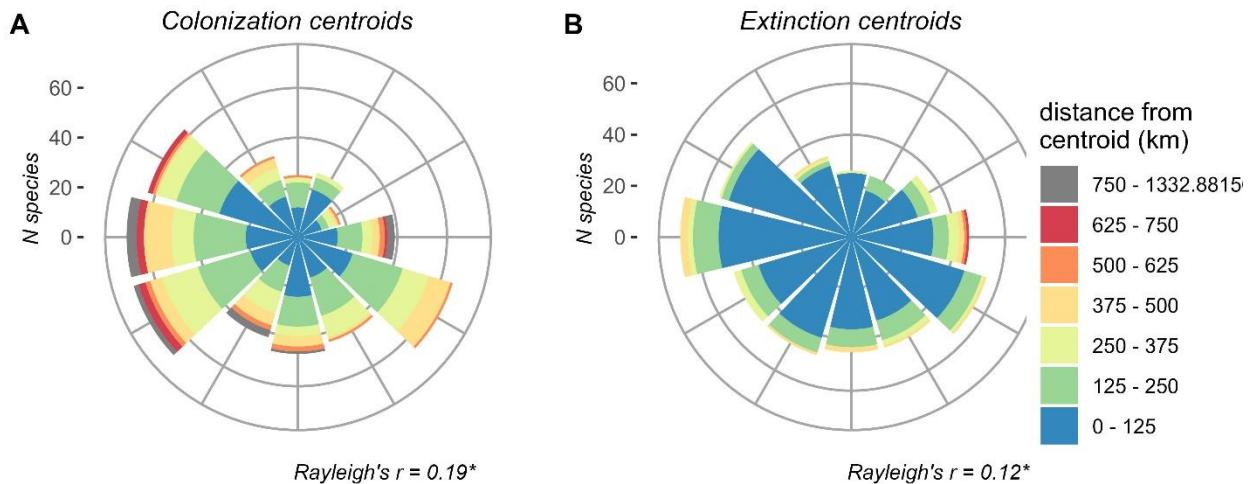
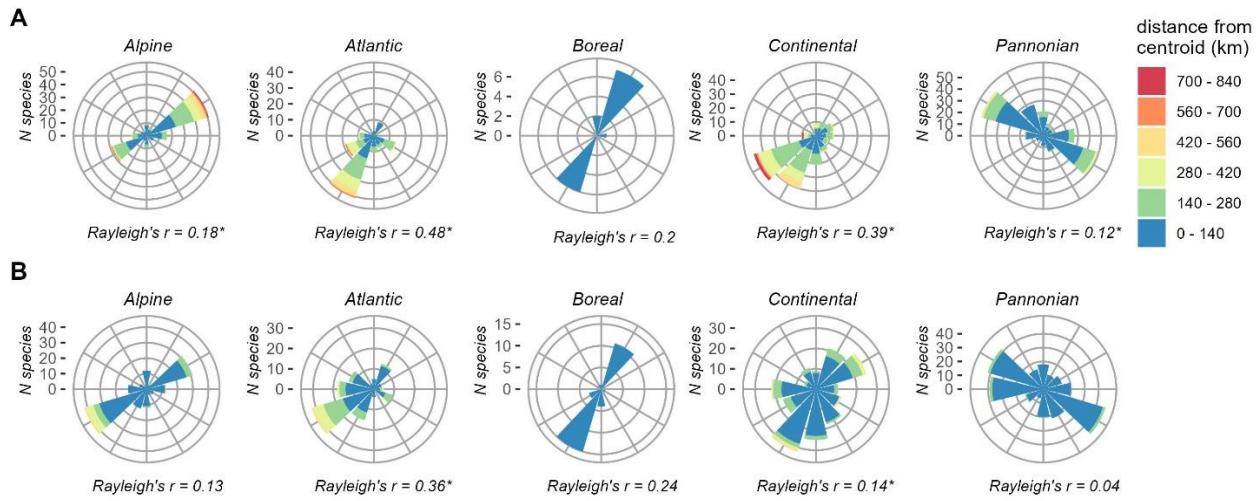

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

Figure S7 | Effects of environmental changes on centroid shifts based on the most parsimonious model, including rare species. (A) Results of the mixed effect models (including rare species; n species = 596) indicating coefficient estimates and 95% confidence intervals (CI) of the effects of velocity of climate change (km year^{-1} , $\text{km north year}^{-1}$, km east year^{-1}), average nitrogen deposition rate between the baseline survey and resurvey ($\text{kg N ha}^{-1} \text{ year}^{-1}$), and canopy change ($\% \text{ cover increase year}^{-1}$), and all pairwise interactions (indicated by '×') on the absolute rate of centroid shifts ($\text{km north year}^{-1}$; negative values indicate southward shifts) and west-east rate (km east year^{-1} ; negative values indicate westward shifts) extracted from the most parsimonious model (empty rows were not included in the final selected model). All the predictor variables are z -transformed to increase comparability. Model fit is presented as the proportional explained variation by the fixed effect (marginal R^2 , R^2_{m}) and the proportional explained variation by the fixed and random effects (conditional R^2 , R^2_{c}). Models accounted for plant growth form as random effect (five levels: forbs, graminoids, pteridophytes, shrubs and trees); (B) Results of the variation partitioning analyses representing the individual contribution of each environmental predictor. Bar plots are proportional to the explained variation by the unique contribution of each fixed effect (expressed as R^2_{m}). In all graphs, estimates and error bars represent the median value and 2.5 – 97.5 percentiles across 1,000 bootstrap samples.


850
851 **Figure S8 | Effects of environmental changes on the rate of centroid shifts (A), distance of colonization**
852 **(B) and extinction (C) centroids based on the most parsimonious model.** (A) Results of the mixed-
853 effects models (n species = 266) indicating coefficient estimates and 95% confidence intervals (CI) of the
854 effects of velocity of climate change ($km\ north\ year^{-1}$, $km\ east\ year^{-1}$), **average acidifying deposition rate**
855 **between the baseline and resurvey** ($Keq\ ha^{-1}\ year^{-1}$), and canopy change ($\% cover\ increase\ year^{-1}$), and all
856 pairwise interactions (indicated by ‘ \times ’) on the absolute rate, south-north rate ($km\ north\ year^{-1}$; **negative**
857 **values indicate southward shifts**) and west-east rate ($km\ east\ year^{-1}$; **negative values indicate westward**
858 **shifts**) of centroids shifts extracted from the most parsimonious model (empty rows were not included in
859 the final selected model). (B, C) Results of the mixed-effects models (n species = 202 and 246 for
860 colonization and extinction centroids, respectively) indicating coefficient estimates (95% CI) of the
861 environmental changes on south-north and west-east distance of colonization extinction centroids extracted
862 from the most parsimonious model. In all graphs, estimates and error bars represent the median value and
863 2.5 – 97.5 percentiles across 1,000 bootstrap samples. Bar plots are proportional to the variation explained
864 by the unique contribution of each fixed effect (expressed as R^2_m). Model fit is presented as the proportion
865 variation explained by the fixed effect (marginal R^2 , R^2_m) and the proportion variation explained by the

866 fixed and random effects (conditional R^2 , R^2_c). Models accounted for plant growth form as random effect
867 (five levels: forbs, graminoids, pteridophytes, shrubs and trees). All the predictor variables were z -
868 transformed to increase comparability.

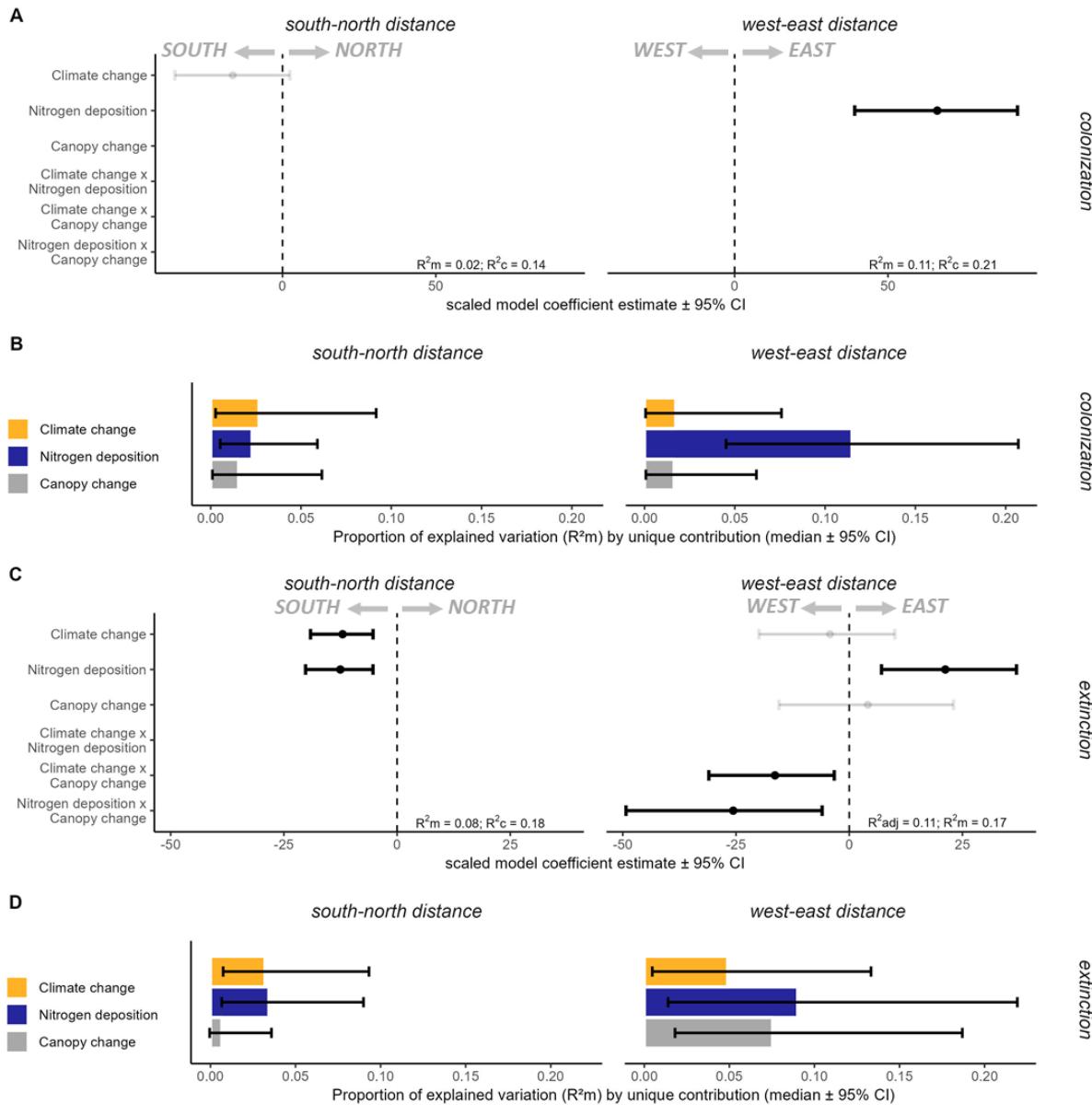
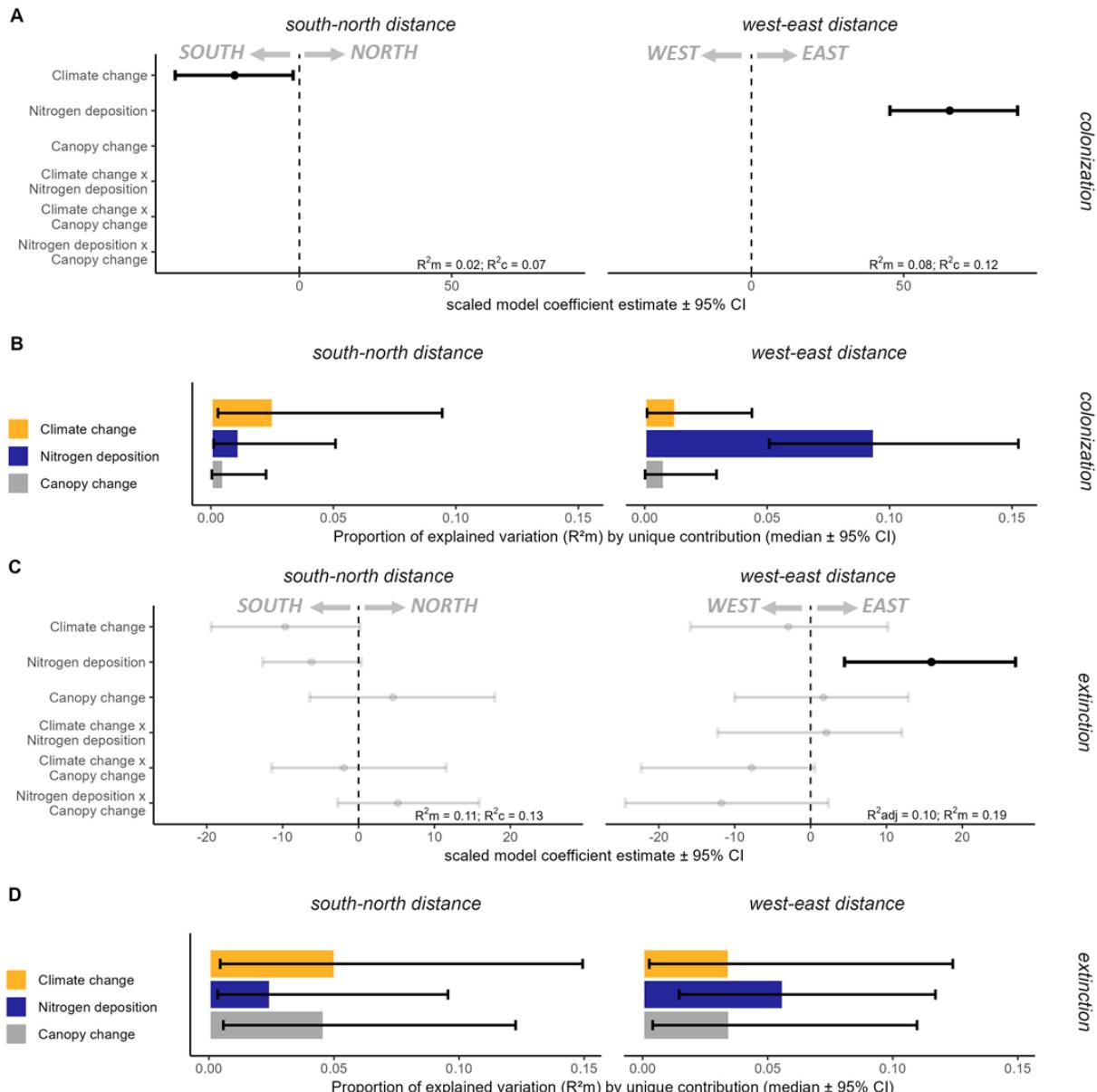

869
870
871
872
873
874
875
876

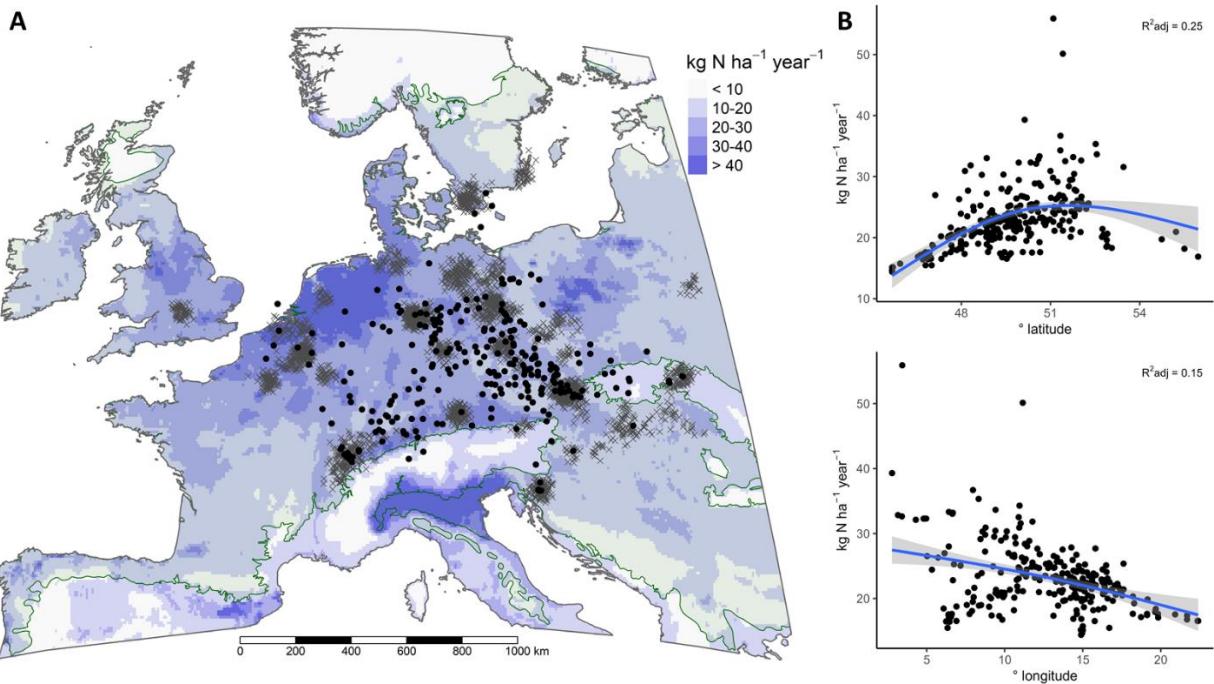
Figure S9 | Distance and geographic direction of colonization and extinction centroids accounted for rare species. (A) Distance and geographic direction of colonization centroids (including rare species; n species = 542). (B) Distance and geographic direction of extinction centroids (n = 527). Longer distances reflect that colonization or extinction took place further away from the original centroid and that these processes are happening in a preferred direction. Rayleigh's r statistic represents a test of uniformity that compares the bearings of shifts to a uniform circular distribution (null hypothesis). Larger values indicate more directed shifts. Asterisk (*) indicates significant deviations from the null hypothesis ($p < 0.05$).

877
878
879
880
881
882
883
884
885

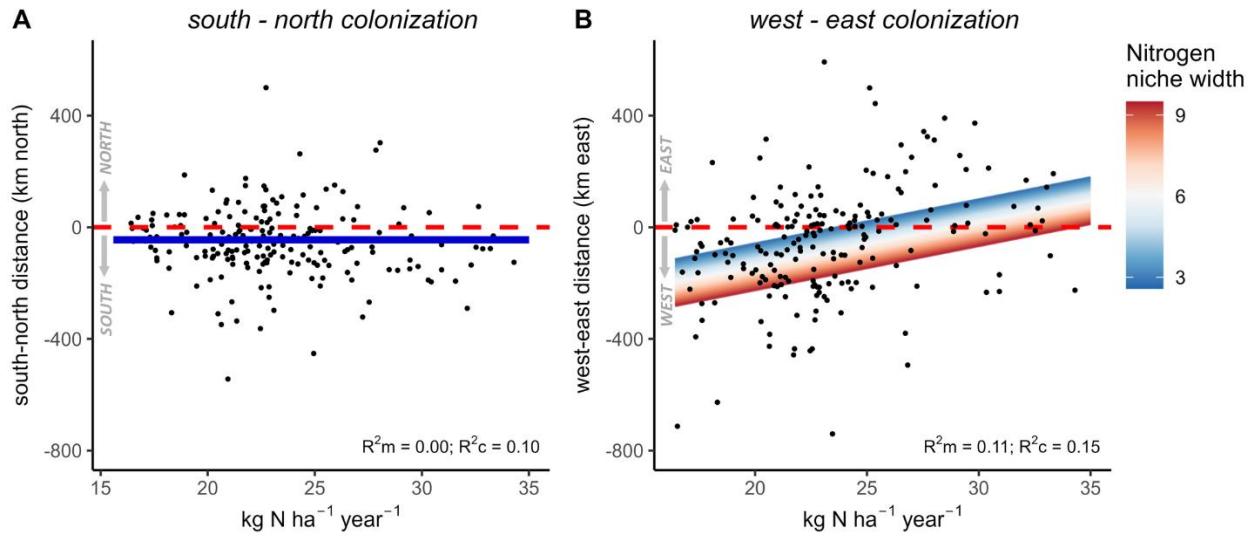

Figure S10 | Distance and geographic direction of colonization and extinction centroids for each biogeographic region. (A) Distance and bearing of colonization centroids (n species Alpine = 130; Atlantic = 126; Boreal = 7; Continental = 193; Pannonian = 212). (B) Distance and bearing of extinction centroids (n species Alpine = 140; Atlantic = 125; Boreal = 28; Continental = 211; Pannonian = 250). Rayleigh's r statistic represents a test of uniformity that compares the bearings of shifts to a uniform circular distribution (null hypothesis). Larger values indicate more directed shifts. Asterisk (*) indicates significant deviations from the null hypothesis (at the level of $p < 0.05$). Biogeographical boundaries were defined by the European Environment Agency (www.eea.europa.eu).

886
887
888
889
890
891
892
893
894
895
896
897
898

Figure S11 | Effects of environmental changes on the distance of colonization and extinction centroids based on the most parsimonious model. (A-B) Results of the mixed-effects models (n species = 202) indicating coefficient estimates and 95% confidence intervals (CI) of the effects of velocity of climate change ($km\ year^{-1}$), average nitrogen deposition rate between the baseline and resurvey ($kg\ N\ ha^{-1}\ year^{-1}$), and canopy change ($\% cover\ increase\ year^{-1}$), and all pairwise interactions (indicated by '×') on northward ($km\ north$; negative values indicate southward colonization) and eastward distance ($km\ east$; negative values indicate westward colonization) of colonization centroids extracted from the most parsimonious model (empty rows were not included in the final selected model), and output of the variation partitioning analysis representing the individual contribution of each environmental predictor. The results show that westward colonization was more common in species that have experienced a lower rate of nitrogen deposition across their distribution. **(C-D)** Results of the mixed-effects models (n species = 246) indicating coefficient estimates (95% CI) of the effects of velocity of climate change, average nitrogen


899 **deposition rate between the baseline and resurvey**, and canopy change, and all pairwise interactions on
900 northward and eastward distance of extinction centroids extracted from the most parsimonious model, and
901 output of the variation partitioning analysis. The results show that species' southward extinction centroids
902 were related to the poleward velocity of climate change and high rates of nitrogen deposition. Eastward
903 extinction centroids were related to a high rate nitrogen deposition and canopy opening. Eastward extinction
904 owing to climate change was more common under canopy opening. In all graphs, estimates and error bars
905 represent the median value and 2.5 – 97.5 percentiles across 1,000 bootstrap samples. Bar plots are
906 proportion to the variation explained by the unique contribution of each fixed effect (expressed as R^2_m).
907 Model fit is presented as the proportional explained variation by the fixed effect (marginal R^2 , R^2_m) and the
908 proportion variation explained by the fixed and random effects (conditional R^2 , R^2_c). Models accounted for
909 plant growth form as random effect (five levels: forbs, graminoids, pteridophytes, shrubs and trees). All the
910 predictor variables were z -transformed to increase comparability. See **Fig. S12** for results on the analyses
911 that also included rare species.

912
913
914
915
916
917
918
919
920
921
922
923
924


Figure 12 | Effects of environmental changes on the distance of colonization and extinction centroids based on the most parsimonious model, including rare species. (A-B) Results of the mixed-effect models (including rare species; n species = 542) indicating coefficient estimates and 95% confidence intervals (CI) of the effects of velocity of climate change ($km\ north\ year^{-1}$, $km\ east\ year^{-1}$), average nitrogen deposition rate between the baseline and resurvey ($kg\ N\ ha^{-1}\ year^{-1}$), and canopy change (% cover increase $year^{-1}$), and all pairwise interactions (indicated by '×') on northward ($km\ north$; negative values indicate southward colonization) and eastward distance ($km\ east$; negative values indicate westward colonization) of colonization centroids extracted from the most parsimonious model (empty rows were not included in the final selected model), and output of the variation partitioning analysis representing the individual contribution of each environmental predictor. (C-D) Results of the mixed-effects models (including rare species; n species = 527) indicating coefficient estimates (95% CI) of the effects of velocity of climate change, average nitrogen deposition rate between the baseline and resurvey, and canopy change, and all

925 pairwise interactions on northward and eastward distance of extinction centroids extracted from the most
926 parsimonious model (empty rows were not included in the final selected model), and output of the variation
927 partitioning analysis. In all graphs, estimates and error bars represent the median value and 2.5 – 97.5
928 percentiles across 1,000 bootstrap samples. Bar plots are proportional to the explained variation by the
929 unique contribution of each fixed effect (expressed as R^2_m). Model fit is presented as the proportion of
930 explained variation by the fixed effect (marginal R^2 , R^2_m) and the proportion of explained variation by the
931 fixed and random effects (conditional R^2 , R^2_c). Models accounted for plant growth form as random effect
932 (five levels: forbs, graminoids, pteridophytes, shrubs and trees); All the predictor variables are z -
933 transformed to increase comparability.

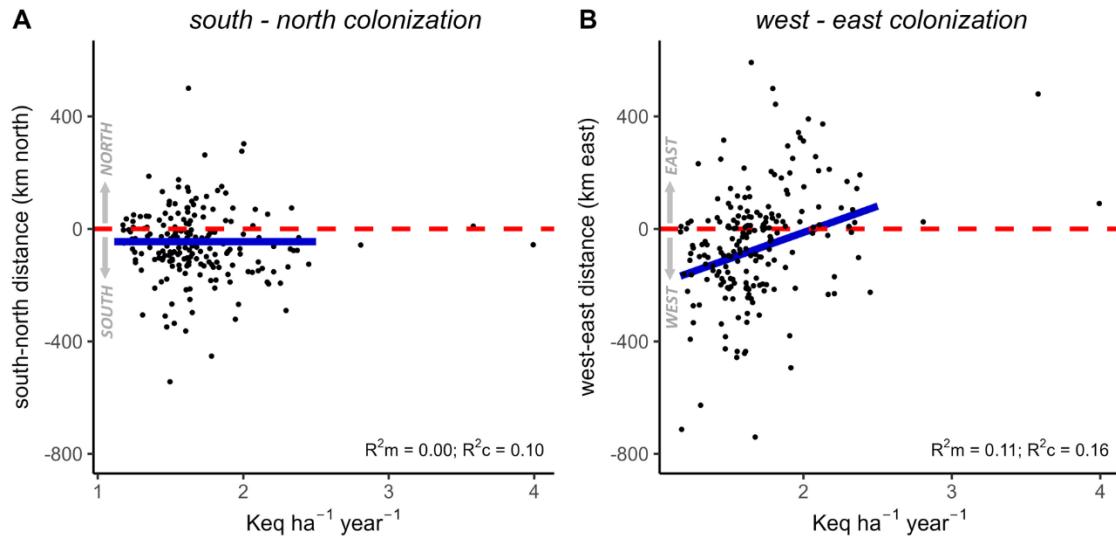

934
935
936
937
938
939
940
941
942

Figure S13 | Spatial variation in the nitrogen deposition rate across the baseline centroid positions.
 (A) Map of modelled nitrogen (N) deposition rate (sum oxidized and reduced wet and dry deposition expressed in $\text{kg N ha}^{-1} \text{ year}^{-1}$; dry deposition accounted for deciduous forest surface) at 0.1° resolution for the reference year 2000. Black dots indicate the abundance-weighted centroid of the 266 most common species in the data set. Grey crosses indicate the distribution of the 2,954 vegetation plots (spatially jittered for clarity). (B) species-specific abundance-weighted nitrogen deposition rates regressed to the degree ($^\circ$) latitude and longitude of each species' baseline centroid (n species = 266). The regression line represents the model fit of a generalized additive model, with the k-parameter restricted to three to avoid overfitting.

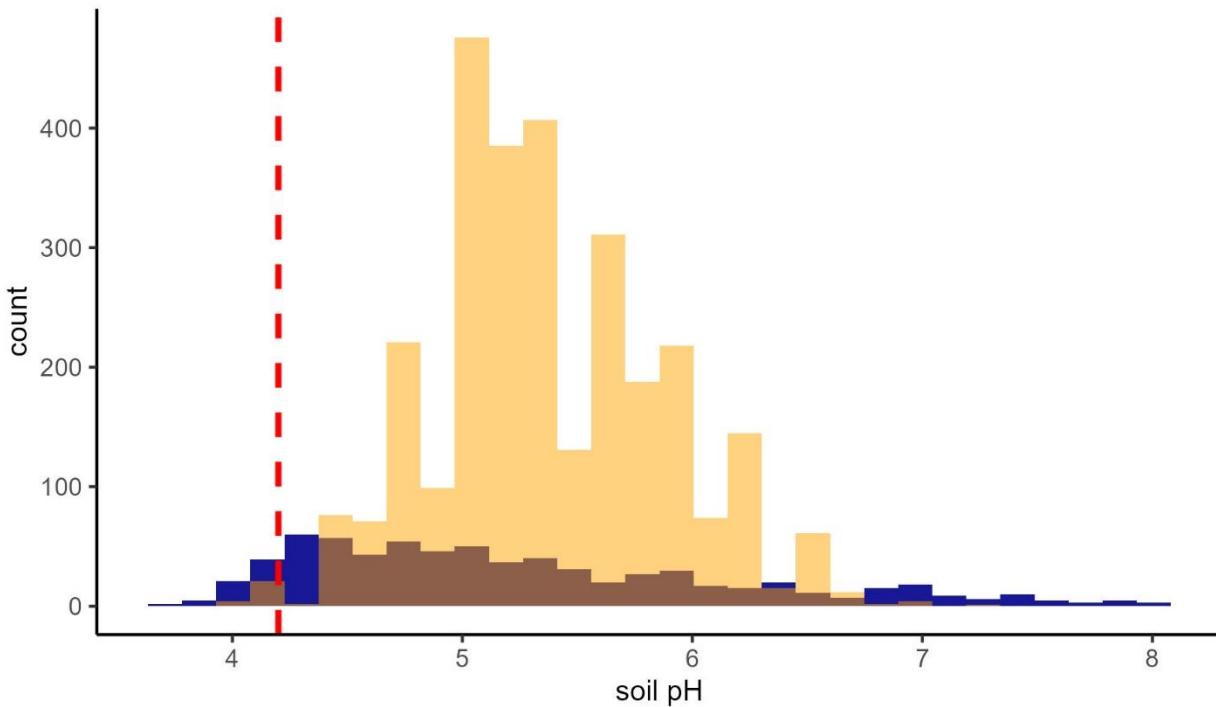

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

Figure S14 | Effects of nitrogen deposition rates and species nitrogen niche width on colonization centroids based on the most parsimonious model when outlier data points were excluded (n = 3 data points). Results of the mixed-effects model testing for the interaction effect between the average nitrogen deposition rate across each species' distribution ($\text{kg N ha}^{-1} \text{ year}^{-1}$) and species Ecological Indicator Value for nitrogen niche width (an index integrating the intra- and inter-regional variability in the nitrogen niche, with higher values indicating more generalist species) on the south-north and west-east colonization centroids. Negative distances indicate southward (A) or westward colonization (B). The effects of nitrogen niche width is plotted with the color gradient. The most parsimonious model structure for west-east colonization did not include the interaction effect anymore, but colonization centroids for generalist species were still often more westward. Colonization centroids of specialist species were either west- or eastward, depending on the experienced nitrogen deposition rate. The most parsimonious model of south-north colonization was an intercept-only model (blue line). Nitrogen generalist species that initially occurred in areas with lower rates of nitrogen deposition moved westward. Colonization in the more specialist species was equally likely westward or eastward, depending on the average rate of nitrogen deposition across their distribution.

959
960
961
962
963
964
965
966
967
968
969

Figure S15 | Model output of the effects of acidifying deposition rates ($Keq\ ha^{-1}\ year^{-1}$) and species acidity (reaction) niche width on colonization centroids based on the most parsimonious model. Results of the mixed-effects model testing for the interaction effect between the average acidifying deposition rate across each species' distribution ($Keq\ ha^{-1}\ year^{-1}$) and species Ecological Indicator Value for acidity (reaction) niche width (an index integrating the intra- and inter-regional variability in the reaction niche) on the south-north and west-east colonization centroids. Negative distances indicate southward (A) or westward colonization (B). The acidity niche width was not included in the most parsimonious model structure. Colonization centroids of species were mainly westward for species that experienced lower rates of acidifying deposition rates. The most parsimonious model of south-north colonization was an intercept-only model (blue line).

970
971
972
973
974
975
976
977
978
979
980

Figure S16 | Distribution of the top-soil pH (pH-H₂O) conditions across the studied vegetation plots. Orange: interpolated top-soil pH (pH-H₂O) conditions by overlaying all out 2,954 studied vegetation plots on top of the gridded soil data layer (SoilGrids.org, 250-meter resolution) available at 250-meter resolution globally. Blue: measured top-soil pH (pH-H₂O) conditions from in-situ soil samples available for 704 vegetation plots across the study area. In-situ soil pH data is available from (58). The median value of top soil pH (pH-H₂O) levels across the plots was between 5.3 (data SoilGrids.org, n plots = 2,954) 5.04 (in-situ soil samples, n plots = 704). The soils across the majority of our plots are relatively well buffered against acidifying deposition due to base cation exchange. Only 0.6 % of all plots (8.8% of the subset of plots with field data) have soil pH levels below the critical pH level of 4.2, a threshold below in which base cations become depleted and levels of Al³⁺ increase in the soil solution (59).

981 **Supplementary Data**

982 **Data S1 | Species list and rates of centroid shifts and environmental changes.** Full list of study species
983 considered, and species-specific values of the absolute rate (km year⁻¹), the south-north rate (km north year⁻¹)
984 and the west-east rate (km east year⁻¹) of centroid shifts; and species-specific experienced rates of
985 atmospheric (nitrogen and acidifying) deposition (kg N year⁻¹ ha⁻¹; K eq year⁻¹ ha⁻¹), forest canopy cover
986 change (% cover increase yr⁻¹) and climate change velocities (km yr⁻¹, km north yr⁻¹, km east yr⁻¹).