Coarse-grained multicomputer parallel algorithm using the four-splitting technique for the minimum cost parenthesizing problem - Modélisation, Information et Systèmes - UR UPJV 4290 Accéder directement au contenu
Communication Dans Un Congrès Année : 2022

Coarse-grained multicomputer parallel algorithm using the four-splitting technique for the minimum cost parenthesizing problem

Résumé

Dynamic programming is a technique widely used to solve several combinatory optimization problems. A well-known example is the minimum cost parenthesizing problem (MPP), which is usually used to represent a class of non-serial polyadic dynamic-programming problems. These problems are characterized by a strong dependency between subproblems. This paper outlines a coarse-grained multicomputer parallel solution using the four-splitting technique to solve the MPP. It is a partitioning technique consisting of subdividing the dependency graph into subgraphs (or blocks) of variable size and splitting large-size blocks into four subblocks to avoid communication overhead caused by a similar partitioning technique in the literature. Our solution consists in evaluating a block by computing and communicating each subblock of this block to reduce the latency time of processors which accounts for most of the global communication time. It requires O(n^3/p) execution time with O(k * \sqrt{p}) communication rounds. n is the input data size, p is the number of processors, and k is the number of times the size of blocks is subdivided.
Fichier principal
Vignette du fichier
cari-mpp_4s_cgm-accepted.pdf (1.73 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03712194 , version 1 (02-07-2022)
hal-03712194 , version 2 (09-08-2023)
hal-03712194 , version 3 (02-11-2023)

Identifiants

  • HAL Id : hal-03712194 , version 1

Citer

Jerry Lacmou Zeutouo, Vianney Kengne Tchendji, Jean-Frédéric Myoupo. Coarse-grained multicomputer parallel algorithm using the four-splitting technique for the minimum cost parenthesizing problem. CARI 2022 - Colloque Africain pour la Recherche en Informatique et Mathématiques Appliquées, Oct 2022, Yaoundé, Cameroon. ⟨hal-03712194v1⟩

Collections

CARI2022
141 Consultations
172 Téléchargements

Partager

Gmail Facebook X LinkedIn More