Hybrid Energy-Efficient Local Path Planning for Autonomous Vehicles in Dynamic Environments - ESEO
Communication Dans Un Congrès Année : 2024

Hybrid Energy-Efficient Local Path Planning for Autonomous Vehicles in Dynamic Environments

Résumé

Efficient trajectory planning plays a crucial role in the development of autonomous vehicles, ensuring safe and optimized navigation in dynamic environments. This paper proposes a novel energy-efficient hybrid trajectory planning by integrating a sampling-based method with an optimizationbased path refining method. It uses the strength of the samplingbased methods to reduce the solution space and generate a reactive trajectory in a dynamic environment. Following path selection, a septic path is generated and utilized as a reference for an energy-efficient path-refining optimization problem, producing a jerk-controlled trajectory with enhanced computational efficiency. The simulations were conducted in a joint-simulation environment using Simulink/Matlab and the Scaner Studio vehicle dynamics and driving environment simulator. The findings demonstrate the effectiveness of our approach in achieving significant energy savings while adeptly addressing dynamically changing environments.
Fichier principal
Vignette du fichier
ITSC24_0444_FI.pdf (1.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04651719 , version 1 (21-11-2024)
hal-04651719 , version 2 (21-11-2024)

Identifiants

  • HAL Id : hal-04651719 , version 2

Citer

Fadel Tarhini, Reine Talj, Moustapha Doumiati. Hybrid Energy-Efficient Local Path Planning for Autonomous Vehicles in Dynamic Environments. 27th IEEE International Conference on Intelligent Transportation Systems, Sep 2024, Edmonton (Canada), Canada. ⟨hal-04651719v2⟩
248 Consultations
0 Téléchargements

Partager

More