A DSP-Based Implementation of a Nonlinear Optimal Predictive Control for Induction Machine
Résumé
In this paper an optimal nonlinear multiple-input multiple-output (MIMO) Predictive Control approach is applied to control the flux and the rotor position of a threephase Induction Machine. For this, a nonlinear induction machine model is elaborated in the synchronous d-q frame rotating with electromagnetic field. Then, the outputs are predicted over a predefined prediction horizon. The design of the proposed predictive control law is based on the minimization of a quadratic criteria. The control voltages are being smooth and guarantee the stability of the control loop regarding parameter variations. Simulations and experimental results highlight the robustness of the proposed nonlinear optimal predictive control