Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter - Université de Picardie Jules Verne
Article Dans Une Revue Ecography Année : 2024

Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter

Ruben Remelgado
Rubén Mateo
Neftalí Sillero
Vincent Lecours
Vojtěch Barták
Petr Balej
Michele Torresani
Salvador Arenas-Castro
Dominika Prajzlerová
Kateřina Gdulová
Jiří Prošek
Alejandra Zarzo-Arias
Lukáš Gábor
François Leroy
Matilde Martini
Marco Malavasi
Roberto Cazzolla Gatti
Jan Wild
Petra Šímová

Résumé

Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species–environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.
Fichier principal
Vignette du fichier
Ecography - 2024 - Moudrý - Optimising occurrence data in species distribution models sample size positional uncertainty .pdf (1.76 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04667437 , version 1 (23-10-2024)

Licence

Identifiants

Citer

Vítězslav Moudrý, Manuele Bazzichetto, Ruben Remelgado, Rodolphe Devillers, Jonathan Lenoir, et al.. Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter. Ecography, 2024, pp.e07294. ⟨10.1111/ecog.07294⟩. ⟨hal-04667437⟩
56 Consultations
3 Téléchargements

Altmetric

Partager

More