Pré-Publication, Document De Travail Année : 2025

Monotonicity for solutions to semilinear problems in epigraphs

Résumé

We consider positive solutions, possibly unbounded, to the semilinear equation $-\Delta u=f(u)$ on continuous epigraphs bounded from below. Under the homogeneous Dirichlet boundary condition, we prove new monotonicity results for $u$, when $f$ is a (locally or globally) Lipschitz-continuous function satisfying $ f(0) \geq 0$. As an application of our new monotonicity theorems, we prove some classification and/or non-existence results. To prove our results, we first establish some new comparison principles for semilinear problems on general unbounded open sets of $\mathbb{R}^N$, and then we use them to start and to complete a modified version of the moving plane method adapted to the geometry of the epigraph $\Omega$. As a by-product of our analysis, we also prove some new results of uniqueness and symmetry for solutions (possibly unbounded and sign-changing) to the homogeneous Dirichlet BVP for the semilinear Poisson equation in fairly general unbounded domains.
Fichier principal
Vignette du fichier
Monotonicity-in-epigraphs-11-02-25.pdf (963) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04942001 , version 1 (12-02-2025)

Identifiants

Citer

Nicolas Beuvin, Alberto Farina, Berardino Sciunzi. Monotonicity for solutions to semilinear problems in epigraphs. 2025. ⟨hal-04942001⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More