Global longitudinal strain software upgrade: Implications for intervendor consistency and longitudinal imaging studies
Résumé
Background. Speckle tracking can be used to measure left ventricular global longitudinal strain (GLS). Aims. To study the effect of speckle tracking software product upgrades on GLS values and intervendor consistency. Methods. Subjects (p atients or healthy volunteers) underwent systematic echocardiography with equipment from Philips and GE, without a change in their position. Off-line post-processing for GLS assessment was performed with the former and most recent upgrades from these two vendors (Philips QLAB 9.0 and 10.2; GE EchoPAC 12.1 and 13.1.1). GLS was obtained in three myocardial layers with EchoPAC 13.1.1. Intersoftware and intervendor consistency was assessed. Interobserver variability was tested in a subset of patients. Results. Among 73 subjects (65 patients and 8 healthy volunteers), absolute values of GLS were higher with QLAB 10.2 compared with 9.0 (intraclass correlation coefficient [ICC]: 0.88; bias: 2.2%). Agreement between EchoPAC 13.1.1 and 12.1 varied by myocardial layer (13.1.1 only): midwalt (ICC: 0.95; bias: -1.1%), endocardium (ICC: 0.93; bias: 1.6%) and epicardial (ICC: 0.80; bias: -3.3%). Although GLS was comparable for QLAB 9.0 versus EchoPAC 12.1 (ICC: 0.95; bias: 0.5%), the agreement was lower between QLAB 10.2 and EchoPAC 13.1.1 endocardial (ICC: 0.91; bias: 1.1%), midwall (ICC: 0.73; bias: 3.9%) and epicardial (ICC: 0.54; bias: 6.0%). Interobserver variability of all software products in a subset of 20 patients was excellent (ICC: 0.97-0.99; bias: -0.8 to 1.0%). Conclusion. Upgrades of speckle tracking software may be associated with significant changes in GLS values, which could affect intersoftware and intervendor consistency. This finding has important clinical implications for the longitudinal follow-up of patients with speckle tracking echocardiography. (C) 2015 Elsevier Masson SAS. All rights reserved.