Non-kissing complexes and tau-tilting theory for gentle algebras - Université de Picardie Jules Verne
Article Dans Une Revue Memoirs of the American Mathematical Society Année : 2021

Non-kissing complexes and tau-tilting theory for gentle algebras

Résumé

We interpret the support τ \tau -tilting complex of any gentle bound quiver as the non-kissing complex of walks on its blossoming quiver. Particularly relevant examples were previously studied for quivers defined by a subset of the grid or by a dissection of a polygon. We then focus on the case when the non-kissing complex is finite. We show that the graph of increasing flips on its facets is the Hasse diagram of a congruence-uniform lattice. Finally, we study its g \mathbf {g} -vector fan and prove that it is the normal fan of a non-kissing associahedron.
Fichier principal
Vignette du fichier
1707.07574v4.pdf (1.62 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03623106 , version 1 (12-07-2024)

Identifiants

Citer

Yann Palu, Vincent Pilaud, Pierre-Guy Plamondon. Non-kissing complexes and tau-tilting theory for gentle algebras. Memoirs of the American Mathematical Society, 2021, 274 (1343), pp.7-91. ⟨10.1090/memo/1343⟩. ⟨hal-03623106⟩
115 Consultations
20 Téléchargements

Altmetric

Partager

More