Non-kissing complexes and tau-tilting theory for gentle algebras
Résumé
We interpret the support τ \tau -tilting complex of any gentle bound quiver as the non-kissing complex of walks on its blossoming quiver. Particularly relevant examples were previously studied for quivers defined by a subset of the grid or by a dissection of a polygon. We then focus on the case when the non-kissing complex is finite. We show that the graph of increasing flips on its facets is the Hasse diagram of a congruence-uniform lattice. Finally, we study its g \mathbf {g} -vector fan and prove that it is the normal fan of a non-kissing associahedron.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|