Accurate Fault Diagnosis and Classification Scheme based on Non-Parametric, Statistical-Frequency Features and Neural Networks - Université de Picardie Jules Verne Accéder directement au contenu
Communication Dans Un Congrès Année : 2018

Accurate Fault Diagnosis and Classification Scheme based on Non-Parametric, Statistical-Frequency Features and Neural Networks

R. R. Kumar
  • Fonction : Auteur
M. Cirrincione
  • Fonction : Auteur
M. Andriollo
  • Fonction : Auteur
A. Tortella
  • Fonction : Auteur

Résumé

This paper presents a fault diagnosis and classification scheme for induction machines by using motor current signature analysis together with neural networks. The adopted strategy utilizes three-phase stator current sensors and calculates appropriate features using non-parametric and a statistical approach. The feature-set is reduced by means of the principal component analysis which acts as a pre-processor for the multilayer perceptron neural network. This two stage classification is carried out for detection and classification of faults. The efficacy of the proposed scheme is validated experimentally by using grid and inverter fed induction motors.
Fichier non déposé

Dates et versions

hal-03631450 , version 1 (05-04-2022)

Identifiants

  • HAL Id : hal-03631450 , version 1

Citer

R. R. Kumar, G. Cirrincione, M. Cirrincione, M. Andriollo, A. Tortella. Accurate Fault Diagnosis and Classification Scheme based on Non-Parametric, Statistical-Frequency Features and Neural Networks. 2018 XIII INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), Sep 2018, Alexandroupoli, Greece. pp.1747-1753. ⟨hal-03631450⟩

Collections

U-PICARDIE LTI
3 Consultations
0 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More