Article Dans Une Revue Acta Applicandae Mathematicae Année : 2023

Asymptotic expansion of the solutions to a regularized Boussinesq system (theory and numeric)

Résumé

We here consider the propagation of surface water waves described by the Boussinesq system. Following [9], we introduce a regularized Boussinesq system obtained by adding a non-local pseudo-differential operator define by g λ [ζ] = |k| λ ζk with λ ∈]0, 2]. In this paper, we display a twofold approach: First, we study theoretically the existence of an asymptotic expansion for the solution to the Cauchy problem associated to this regularized Boussinesq system with respect to the regularizing parameter ϵ. Then, we compute the function coefficients of the expansion (in ϵ) numerically and verify numerically the validity of this expansion up to order 2. We also check the numerical L 2 stability of the numerical algorithm.
Fichier principal
Vignette du fichier
Article_1___18_juin_2023-1.pdf (408.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04177049 , version 1 (03-08-2023)

Identifiants

Citer

Ahmad Safa, Hervé Le Meur, Jean-Paul Chehab, Raafat Talhouk. Asymptotic expansion of the solutions to a regularized Boussinesq system (theory and numeric). Acta Applicandae Mathematicae, 2023, 191 (1), pp.12. ⟨10.1007/s10440-024-00660-3⟩. ⟨hal-04177049⟩

Relations

107 Consultations
74 Téléchargements

Altmetric

Partager

More